Highly efficient removal of arsenic (III/V) from groundwater using nZVI functionalized cellulose nanocrystals fabricated via a bioinspired strategy.

Sci Total Environ

Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China. Electronic address:

Published: October 2022

Utilizing nanoscale zero valent iron (nZVI) to purify groundwater contaminated by arsenic species [As(III/V)] is an efficient technology, but the fast and severe aggregation of nZVI limits its practical applications. Herein, nZVI was anchored onto the mussel-inspired polydopamine-coated cellulose nanocrystals (CNCs-PDA-nZVI) as an efficient material for As groundwater remediation. In this set, the introduction of nZVI was expected to significantly enhance the arsenic removal property, while cellulose nanocrystals (CNCs) endowed nZVI with ultrahigh dispersibility. The batch results showed that the maximum As adsorption capacities of CNCs-PDA-nZVI (i.e., 333.3 mg g and 250.0 mg g for As(III) and As(V), respectively) were ten times higher compared with those of pristine CNCs. The kinetics results revealed that chemical adsorption was dominant for As adsorption. The isotherms indicated that a homogeneous adsorption for As(III) and heterogenous adsorption for As(V) on the surface of CNCs-PDA-nZVI. The removal mechanisms for As by CNCs-PDA-nZVI included adsorption-oxidation, coprecipitation and inner-sphere complexation. Overall, the excellent arsenic removal efficiency makes CNCs-PDA-nZVI a promising material for the remediation of As polluted groundwater, and this in-situ anchoring strategy can be extended to overcome the aggregation bottleneck of other nanoparticles for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156937DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
12
arsenic removal
8
nzvi
6
cncs-pda-nzvi
5
adsorption
5
highly efficient
4
removal
4
efficient removal
4
arsenic
4
removal arsenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!