Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1.

J Hazard Mater

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China; School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, PR China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China. Electronic address:

Published: September 2022

Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80% of Impranil PU after 3 days of incubation at 28 ℃ by breaking the carbonyl groups (1732 cm) and C-N-H bonds (1532 cm and 1247 cm) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation" was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129406DOI Listing

Publication Analysis

Top Keywords

hydrophobic surface
12
surface binding
12
cladosporium halotolerans
8
deep sea
8
carbon source
8
degradation intermediates
8
binding proteins
8
impranil
6
biodegradation polyester
4
polyester polyurethane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!