Due to the high migration capacity in agricultural soil-crop systems, cadmium (Cd) is accumulated in various crops and severely inhibits plant growth. In this study, we showed that, under Cd stress, the plant-symbiotic fungus Metarhizium robertsii reduced Cd accumulation in Arabidopsis thaliana shoots and roots by 21.8 % and 23.8 %, respectively. This is achieved by M. robertsii colonization-induced elevation of Cd efflux capacity via upregulation of three PCR genes, which is confirmed by the fact that the extent to which M. robertsii reduced Cd accumulation in the WT plants was greater than the inactivating mutants of the PCR genes. M. robertsii also alleviated Cd-induced leaf etiolation in A. thaliana by increasing the chlorophyll amount and modified plant physiological status to increase Cd stress tolerance via increasing production of catalase, peroxidase and glutathione and upregulating multiple HIPP proteins involved in sequestration of Cd. Notably, consistent with that in A. thaliana, the colonization of M. robertsii also reduced the Cd accumulation in Oryza sativa seedlings by upregulating the PCR gene OsPCR1, and increased chlorophyll amount and alleviated oxidative stress. Therefore, M. robertsii colonization reduced Cd accumulation in plants, and promoted plant growth and health by elevating Cd efflux capacity and modifying physiological status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!