Objective: To investigate the accuracy of deep learning methods applied to seizure video data, in discriminating individual semiologic features of dystonia and emotion in epileptic seizures.
Methods: A dataset of epileptic seizure videos was used from patients explored with stereo-EEG for focal pharmacoresistant epilepsy. All patients had hyperkinetic (HKN) seizures according to ILAE definition. Presence or absence of (1) dystonia and (2) emotional features in each seizure was documented by an experienced clinician. A deep learning multi-stream model with appearance and skeletal keypoints, face and body information, using graph convolutional neural networks, was used to test discrimination of dystonia and emotion. Classification accuracy was assessed using a leave-one-subject-out analysis.
Results: We studied 38 HKN seizure videos in 19 patients. By visual analysis based on ILAE criteria, 9/19 patients were considered to have dystonia and 9/19 patients were considered to have emotional signs. Two patients had both dystonia and emotional signs. Applying the deep learning multistream model, spatiotemporal features of facial appearance showed best accuracy for emotion detection (F1 score 0.84), while skeletal keypoint detection performed best for dystonia (F1 score 0.83).
Significance: Here, we investigated deep learning of video data for analyzing individual semiologic features of dystonia and emotion in hyperkinetic seizures. Automated classification of individual semiologic features is possible and merits further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2022.106953 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.
Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Microsc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, University of Missouri, Columbia, Missouri, USA.
Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.
Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!