Objectives: For the development and validation of diagnostic procedures based on microscopic methods, knowledge about the imaging depth and achievable resolution in tissue is crucial. This poses the challenge to develop a microscopic artificial phantom focused on the microscopic instead of the macroscopic optical tissue characteristics.
Methods: As existing artificial tissue phantoms designed for image forming systems are primarily targeted at wide field applications, they are unsuited for reaching the formulated objective. Therefore, a microscopy- and microendoscopy-suited artificial tissue phantom was developed and characterized. It is based on a microstructured glass surface coated with fluorescent beads at known depths covered by a scattering agent with modifiable optical properties. The phantom was examined with different kinds of microscopy systems in order to characterize its quality and stability and to demonstrate its usefulness for instrument comparison, for example, regarding structural as well as fluorescence lifetime analysis.
Results: The analysis of the manufactured microstructured glass surfaces showed high regularity in their physical dimensions in accordance with the specifications. Measurements of the optical parameters of the scattering medium were consistent with simulations. The fluorescent beads coating proved to be stable for a respectable period of time (about a week). The developed artificial tissue phantom was successfully used to detect differences in image quality between a research microscope and an endoscopy based system. Plausible causes for the observed differences could be derived based on the well known microstructure of the phantom.
Conclusions: The artificial tissue phantom is well suited for the intended use with microscopic and microendoscopic systems. Due to its configurable design, it can be adapted to a wide range of applications. It is especially targeted at the characterization and calibration of clinical imaging systems that often lack extensive positioning capabilities such as an intrinsic z-stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lsm.23556 | DOI Listing |
Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Inha University Hospital, Incheon, Republic of Korea.
Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.
Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.
Phys Med Biol
January 2025
North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.
Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, JAPAN.
Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT.
View Article and Find Full Text PDFRep U S
October 2024
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
In diagnosing and treating prostate cancer the flexible bevel tip needle insertion surgical technique is commonly used. Bevel tip needles experience asymmetric loading on the needle's tip, inducing natural bending of the needle and enabling control mechanisms for precise placement of the needle during surgery. Several methods leverage the needles natural bending to provide autonomous control of needle insertion for accurate needle placement in an effort to reduce excess tissue damage and improve patient outcomes from needle insertion intraventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!