Background: Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by L-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals.
Results: Both GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene.
Conclusions: The simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233358 | PMC |
http://dx.doi.org/10.1186/s12862-022-02040-7 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFBMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Rheumatology and Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
Background: Intestinal Behçet's syndrome (IBS) has high morbidity and mortality rates with serious complications. However, there are few specific biomarkers for IBS. The purposes of this study were to investigate the distinctive metabolic changes in plasma samples between IBS patients and healthy people, active IBS and inactive IBS patients, and to identify candidate metabolic biomarkers which would be useful for diagnosing and predicting IBS.
View Article and Find Full Text PDFMol Cancer
January 2025
RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.
Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!