Somatosensory short-term memory is essential for object recognition, sensorimotor learning, and, especially, Braille reading for people who are blind. This study examined how visual sensory deprivation and a compensatory focus on somatosensory information influences memory processes in this domain. We measured slow cortical negativity developing during short-term tactile memory maintenance (tactile contralateral delay activity, tCDA) in frontal and somatosensory areas while a sample of 24 sighted participants and 22 participants who are blind completed a tactile change-detection task where varying loads of Braille pin patterns served as stimuli. Auditory cues, appearing at varying latencies between sample arrays, could be used to reduce memory demands during maintenance. Participants who are blind (trained Braille readers) outperformed sighted participants behaviorally. In addition, while task-related frontal activation featured in both groups, participants who are blind uniquely showed higher tCDA amplitudes specifically over somatosensory areas. The site specificity of this component's functional relevance in short-term memory maintenance was further supported by somatosensory tCDA amplitudes first correlating across the whole sample with behavioral performance, and secondly showing sensitivity to varying memory load. The results substantiate sensory recruitment models and provide new insights into the effects of visual sensory deprivation on tactile processing. Between-group differences in the interplay between frontal and somatosensory areas during somatosensory maintenance also suggest that efficient maintenance of complex tactile stimuli in short-term memory is primarily facilitated by lateralized activity in somatosensory cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119407DOI Listing

Publication Analysis

Top Keywords

short-term memory
16
participants blind
16
memory maintenance
12
sighted participants
12
somatosensory areas
12
somatosensory
9
somatosensory short-term
8
memory
8
contralateral delay
8
delay activity
8

Similar Publications

Over time, the importance of virtual power plants (VPP) has markedly risen to seamlessly incorporate the sporadic nature of renewable energy sources into the existing smart grid framework. Simultaneously, there is a growing need for advanced forecasting methods to bolster the grid's stability, flexibility, and dispatchability. This paper presents a dual-pronged, innovative approach to maximize income in the day-ahead power market through VPP.

View Article and Find Full Text PDF

Hip prosthesis failure prediction through radiological deep sequence learning.

Int J Med Inform

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20131 Milan, MI, Italy; Cardio Tech-Lab, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138 Milan, Italy. Electronic address:

Background: Existing deep learning studies for the automated detection of hip prosthesis failure only consider the last available radiographic image. However, using longitudinal data is thought to improve the prediction, by combining temporal and spatial components. The aim of this study is to develop artificial intelligence models for predicting hip implant failure from multiple subsequent plain radiographs.

View Article and Find Full Text PDF

A comparative analysis of CNNs and LSTMs for ECG-based diagnosis of arrythmia and congestive heart failure.

Comput Methods Biomech Biomed Engin

January 2025

Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

Cardiac arrhythmias are major global health concern and their early detection is critical for diagnosis. This study comprehensively evaluates the effectiveness of CNNs and LSTMs for the classification of cardiac arrhythmias, considering three PhysioNet datasets. ECG records are segmented to accommodate around ∼10s of ECG data.

View Article and Find Full Text PDF

Volatile Resistive Switching and Short-Term Synaptic Plasticity in a Ferroelectric-Modulated SrFeO Memristor.

ACS Appl Mater Interfaces

January 2025

Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

SrFeO (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO (BM-SFO) phase and a conductive perovskite SrFeO (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field.

View Article and Find Full Text PDF

Purpose In recent years, research on caregivers has highlighted the importance of integrating advanced technologies, such as wearable devices. Furthermore, when investigating the characteristics of persons with dementia (PWD), comparative analyses should be conducted based on the presence or absence of the condition. We aimed to elucidate the relationship between caregivers' subjective burdens, tasks, and heart rate (HR) using wearable sensors to objectively assess the health status of caregivers of PWD and older adults requiring long-term care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!