Lithium occurrence in drinking water sources of the United States.

Chemosphere

Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA. Electronic address:

Published: October 2022

Lithium (Li) is listed in the fifth Unregulated Contaminant Monitoring Rule (UCMR 5) because insufficient exposure data exists for lithium in drinking water. To help fill this data gap, lithium occurrence in source waters across the United States was assessed in 21 drinking water utilities. From the 369 samples collected from drinking water treatment plants (DWTPs), lithium ranged from 0.9 to 161 μg/L (median = 13.9 μg/L) in groundwater, and from <0.5 to 130 μg/L (median = 3.9 μg/L) in surface water. Lithium in 56% of the groundwater and 13% of the surface water samples were above non-regulatory Health-Based Screening Level (HBSL) of 10 μg/L. Sodium and lithium concentrations were strongly correlated: Kendall's τ > 0.6 (p < 0.001). As sodium is regularly monitored, this result shows that sodium can serve as an indicator to identify water sources at higher risk for elevated lithium. Lithium concentrations in the paired samples collected in source water and treated drinking water were almost identical showing lithium was not removed by conventional drinking water treatment processes. Additional sampling in wastewater effluents detected lithium at 0.8-98.2 μg/L (median = 9.9 μg/L), which suggests more research on impacts of lithium in direct and indirect potable reuse may be warranted, as the median was close to the HBSL. For comparison with the study samples collected from DWTPs, lithium concentrations from the national water quality portal (WQP) database were also investigated. Over 35,000 measurements were collected from waters that could potentially be used as drinking water sources (Cl < 250 mg/L). Data from WQP had comparable median lithium concentrations: 18 and 20 μg/L for surface water and groundwater, respectively. Overall, this study provides a comprehensive occurrence potential for lithium in US drinking water sources and can inform the data collection effort in UCMR 5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724211PMC
http://dx.doi.org/10.1016/j.chemosphere.2022.135458DOI Listing

Publication Analysis

Top Keywords

drinking water
16
lithium occurrence
8
united states
8
lithium
5
drinking
4
occurrence drinking
4
water
4
water sources
4
sources united
4
states lithium
4

Similar Publications

Predicting few disinfection byproducts in the water distribution systems using machine learning models.

Environ Sci Pollut Res Int

January 2025

Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.

View Article and Find Full Text PDF

Purpose: Energy is a health issue. Energy intersects with health outcomes, as evidenced by the relationship between access to clean fuels and technologies and population health measured by life expectancy at birth.

Methods: Utilizing a comprehensive dataset spanning 190 countries from 2000 to 2022, this paper employs a range of static and dynamic panel data models to analyze this empirical relationship, while effectively managing unobserved country-specific heterogeneity and endogeneity issues.

View Article and Find Full Text PDF

Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches.

View Article and Find Full Text PDF

Background: Poultry red mites, or , pose a threat to the welfare and productivity of laying hens. Moreover, the increasing resistance of these mites to conventional miticides highlights the urgent need for alternative treatment options. There are also documented cases of poultry red mite infestations in humans.

View Article and Find Full Text PDF

The study focused on converting tea bag waste into strong fluorescence carbon quantum dots (TBW-CQDs) for the detection of acrylamide in drinking water, antimicrobial activity, and photocatalytic degradation. The TBW-CQDs exhibited blue luminescence and maximum absorbance at 287 nm under UV light and distinctive fluorescence emission and excitation wavelengths at 425 nm and 287 nm, respectively. TBW-CQDs revealed a particle size of 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!