Discovery of 7, 4'-dimethoxy-3-hydroxyflavone as a protease-activated receptor 4 antagonist with antithrombotic activity and less bleeding tendency in mice.

Biochem Pharmacol

Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Published: August 2022

There is growing evidence of the importance of protease-activated receptor 4 (PAR4), one of thrombin receptors, as a therapeutic target in thrombotic cardiovascular diseases. In the present study, we utilized ligand-based virtual screening, bioassay, and structure-activity relationship study to discover PAR4 antagonists with new chemical scaffolds from natural origin, and examined their application as antiplatelet agents. By using these approaches, we have identified a flavonoid, 7, 4'-dimethoxy-3-hydroxyflavone, that exhibits anti-PAR4 activity. 7, 4'-Dimethoxy-3-hydroxyflavone inhibited PAR4-mediated human platelet aggregation, GPIIb/IIIa activation, and P-selectin secretion. Also, it inhibited PAR4 downstream signaling pathways, including Ca/protein kinase C, Akt, and MAP kinases ERK and p38, in human platelets, and suppressed PAR4-mediated β-arrestin recruitment in CHO-K1 cells exogenously expressed human PAR4. In a microfluidic system, 7, 4'-dimethoxy-3-hydroxyflavone reduced thrombus formation on collagen-coated chambers at an arterial shear rate in recalcified whole blood. Furthermore, mice treated with 7, 4'-dimethoxy-3-hydroxyflavone were significantly protected from FeCl-induced carotid arterial occlusions, without significantly affecting tail bleeding time. In conclusion, 7, 4'-dimethoxy-3-hydroxyflavone represents a new class of nature-based PAR4 antagonist, it shows effective in vivo antithrombotic properties with less bleeding tendency, and could be a potential candidate for developing new antiplatelet agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2022.115152DOI Listing

Publication Analysis

Top Keywords

protease-activated receptor
8
bleeding tendency
8
antiplatelet agents
8
par4
5
4'-dimethoxy-3-hydroxyflavone
5
discovery 4'-dimethoxy-3-hydroxyflavone
4
4'-dimethoxy-3-hydroxyflavone protease-activated
4
receptor antagonist
4
antagonist antithrombotic
4
antithrombotic activity
4

Similar Publications

USP34 regulates endothelial PAR1 mRNA transcript expression and cellular signaling.

Mol Biol Cell

December 2024

Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093.

Signaling by G protein-coupled receptors (GPCRs) is regulated by temporally distinct processes including receptor desensitization, internalization, and lysosomal sorting, and are tightly controlled by post-translational modifications. While the role of phosphorylation in regulating GPCR signaling is well studied and established, the mechanisms by which other post-translational modifications, such as ubiquitination, regulate GPCR signaling are not clearly defined. We hypothesize that GPCR ubiquitination and deubiquitination is critical for proper signaling and cellular responses.

View Article and Find Full Text PDF

aPKC/Par3/Par6 polarity complexes regulate podocyte motility and crescent formation in the progression of ANCA-associated vasculitis.

Rheumatology (Oxford)

December 2024

Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

Objectives: Podocyte bridging may be a key initial event occurring early in crescent formation. This study aims to probe the underlying mechanism of atypical protein kinase C (aPKC)/protease-activated receptor 3(Par3)/Par6 polarity complexes on podocyte motility and crescent formation during the progression of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).

Methods: The effects of anti-TNF-α monoclonal antibody (mAb) on the crescent formation, localization and expression of aPKC/Par3/Par6 polarity complexes, and activities of small GTPases (Rho/Rac1/Cdc42) were explored in an AAV mouse model.

View Article and Find Full Text PDF

Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them.

View Article and Find Full Text PDF

Background: Treatment of breast cancers with immunotherapy has so far achieved limited success. Traditional immunotherapies focusing on cytotoxic T cells have attained modest success, while the approval of phagocytic checkpoint blockers is still pending. Coagulation proteases are crucial elements pertaining to cancer growth and proliferation, but their relevance in altering the immunological topography in tumours remain largely uncharted.

View Article and Find Full Text PDF

Tissue factor (TF) and protease-activated receptor 2 (PAR2) have been associated with the progression of cancer, while integrins are essential for the adhesion and migration of cancer cells. This study aimed to explore the cross-talk between the TF:FVIIa complex, PAR2 signaling, and the expression of integrin α1 in cervical cancer cells. Utilizing data from The Cancer Genome Atlas (TCGA), the research examined the relationship between the TF and PAR2 genes and the integrin α1 gene (ITGA1) in reproductive cancers, revealing a positive correlation between integrin α1 expression and both TF and PAR2 genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!