The effect of long-term water and integrated fertilization on prokaryotic microorganisms and their regulation for crop nutrient uptake remains unknown. Therefore, the impact of soil water and integrated fertilization after eight years on prokaryotic microbial communities in different compartments of root zone and their association with wheat nitrogen (N) absorption and yield were investigated. The results showed that compared with fertilization treatments (F), water regimes (W) more drastically modulated the prokaryotic microbial community structure and diversity in bulk soil, rhizosphere and endosphere. The increase of irrigation improved the prokaryotic diversity in the rhizosphere and endosphere while decreased the diversity in the bulk soil. Application of organic fertilizers significantly improved soil organic matter (SOM) and nutrient contents, increased rhizosphere and endophytic prokaryotic microbial diversity, and elevated the relative abundance of aerobic ammonia oxidation and nitrification-related functional microorganisms in rhizosphere and endosphere. Increasing irrigation elevated the relative abundance of functional microorganisms related to aerobic ammonia oxidation and nitrification in the rhizosphere and endosphere. Soil water content (SWC) and NH-N as well as NO-N were key predictors of prokaryotic microbial community composition under W and F treatments, respectively. Appropriate application of irrigation and organic fertilizers increased the relative abundance of some beneficial bacteria such as Flavobacterium. Water and fertilization treatments regulated the prokaryotic microbial communities of bulk soil, rhizosphere and endosphere by altering SWC and SOM, and provided evidence for the modulation of prokaryotic microorganisms to promote nitrogen uptake and wheat yield under long-term irrigation and fertilization. Conclusively, the addition of organic manure (50 %) with inorganic fertilizers (50 %) and reduced amount of irrigation (pre-sowing and jointing-period irrigation) decreased the application amount of chemical fertilizers and water, while increased SOM and nutrient content, improved prokaryotic diversity, and changed prokaryotic microbial community structure in the wheat root zone, resulting in enhanced nutrient uptake and wheat yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156952DOI Listing

Publication Analysis

Top Keywords

prokaryotic microbial
28
rhizosphere endosphere
20
microbial community
16
root zone
12
uptake wheat
12
wheat yield
12
bulk soil
12
relative abundance
12
prokaryotic
11
wheat root
8

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas.

View Article and Find Full Text PDF

Biogeographical Distribution of River Microbial Communities in Atlantic Catchments.

Environ Microbiol Rep

February 2025

IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Universidad de Cantabria, Santander, Spain.

Microbes inhabit virtually all river ecosystems, influencing energy flow and playing a key role in global sustainability and climate change. Yet, there is uncertainty about how various taxonomic groups respond to large-scale factors in river networks. We analysed microbial community richness and composition across six European Atlantic catchments using environmental DNA sequencing.

View Article and Find Full Text PDF

CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic .

Arch Immunol Ther Exp (Warsz)

January 2025

Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA.

Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS).

View Article and Find Full Text PDF

Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!