Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The numbers of pediatric brain tumor survivors are increasing due to improved treatment protocols and multimodal treatments. Many survivors have neurocognitive sequelae, especially after radiotherapy. Neuropsychologic assessment is therefore essential to interpret clinical outcome, evaluate treatments protocol, and implement rehabilitation interventions. The overall aim of this study was to describe neurocognitive functions before and after radiotherapy. We also aimed to explore potential confounding risk factors that could affect the interpretation of radiotherapy-induced neurocognitive decline.
Methods: Fifty pediatric brain tumor survivors who had received radiotherapy (five years or more ago) were included. Clinical characteristics, potential confounding risk factors, radiotherapy plans, and neurocognitive functions on intelligence quotient (IQ) and neuropsychologic measurements were analyzed before and after radiotherapy.
Results: Neurocognitive functions were affected before radiotherapy and were progressively aggravated thereafter. The last neuropsychologic assessment after radiotherapy varied between two and 139 months. Nineteen patients were tested five years after radiotherapy, and 90% of them performed ≥1 S.D. below the normative mean on IQ measurements. Several potential confounding risk factors including those induced by radiotherapy were associated with lower performance on perceptual function, working memory, and processing speed. Longer time after radiotherapy was particularly associated with lower performance on working memory and processing speed. Importantly, the neuropsychologic assessments revealed more comprehensive problems than could be inferred from IQ measurements alone.
Conclusions: Our study underpins the importance of systematic and structured neuropsychologic assessment before and after radiotherapy. The timing of the assessment is important, and potential confounding risk factors need to be identified to better evaluate radiotherapy-induced neurocognitive decline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pediatrneurol.2022.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!