Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of a mild and general method for C(sp )-H functionalization of cyclic amines has been an ongoing challenge. In this work, we describe the copper-catalyzed enantioselective C(sp )-H alkynylation of unactivated cyclic 2-iodo-benzamide under photo-irradiation by intramolecular 1,5-hydrogen atom transfer (HAT). The employment of a new bisoxazoline diphenylamine ligand, in conjunction with 1,1'-bi-2-naphthol, which significantly improved the reduction potential of the copper complex, was the key to success of this chemistry. Mechanistic and computational studies supported that the new copper complex served the dual role as a photoredox and coupling catalyst, the reaction went through a radical process, and the intramolecular 1,5-HAT process was involved in the rate-limiting step. Apart from the broad substrate scope including unprecedented benzocyclic amines, this method also showed excellent diastereoselectivity in 2-monosubstituted cyclic amines via substrate control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202208232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!