An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro.

Mol Plant

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: August 2022

Multisubunit SKP1/Cullin1/F-box (SCF) E3 ligases play essential roles in regulating the stability of crucial regulatory factors and controlling growth and development in eukaryotes. Detecting E3 ligase activity in vitro is important for exploring the molecular mechanism of protein ubiquitination. However, in vitro ubiquitination assay systems for multisubunit E3 ligases remain difficult to achieve, especially in plants, mainly owing to difficulties in achieving active components of multisubunit E3 ligases with high purity and characterizing specific E2 and E3 pairs. In this study, we characterized components of the rice SCF (SCF) E3 ligase, screened the coordinated E2, and reconstituted active SCF E3 ligase in vitro. We further engineered SCF E3 ligase using a fused SKP1-Cullin1-RBX1 (eSCR) protein and found that both the wild-type SCF E3 ligase and the engineered SCF E3 ligase catalyzed ubiquitination of the substrate D53, which is the key transcriptional repressor in strigolactone signaling. Finally, we replaced D3 with other F-box proteins from rice and humans and reconstituted active eSCF E3 ligases, including eSCF, eSCF, and eSCF E3 ligases. Our work reconstitutes functional SCF E3 ligases in vitro and generates an engineered system with interchangeable F-box proteins, providing a powerful platform for studying the mechanisms of multisubunit SCF E3 ligases in eukaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2022.06.011DOI Listing

Publication Analysis

Top Keywords

scf ligase
24
scf ligases
12
scf
10
multisubunit scf
8
ligase in vitro
8
multisubunit ligases
8
reconstituted active
8
engineered scf
8
f-box proteins
8
escf ligases
8

Similar Publications

F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers.

View Article and Find Full Text PDF

A Microtubule-Associated Protein Functions in Preventing Oocytes from Evading the Spindle Assembly Checkpoint.

Adv Sci (Weinh)

December 2024

Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.

Aneuploidy eggs are a common cause of human infertility, spontaneous abortion, or trisomy syndromes. The spindle assembly checkpoint (SAC) plays a crucial role in preventing aneuploidy in oocytes, yet it is unclear if additional mechanisms exist to ensure oocyte adherence to this checkpoint. It is now revealed that the microtubule-associated protein NUSAP can prevent oocytes from evading the SAC and regulate the speed of the cell cycle.

View Article and Find Full Text PDF

Dual BACH1 regulation by complementary SCF-type E3 ligases.

Cell

December 2024

Discovery Sciences, Novartis Biomedical Research, Basel, Switzerland. Electronic address:

Broad-complex, tramtrack, and bric-à-brac domain (BTB) and CNC homolog 1 (BACH1) is a key regulator of the cellular oxidative stress response and an oncogene that undergoes tight post-translational control by two distinct F-box ubiquitin ligases, SCF and SCF. However, how both ligases recognize BACH1 under oxidative stress is unclear. In our study, we elucidate the mechanism by which FBXO22 recognizes a quaternary degron in a domain-swapped β-sheet of the BACH1 BTB dimer.

View Article and Find Full Text PDF

Background: Upland rice varieties exhibit significant genetic diversity and broad environmental adaptability, making them ideal candidates for identifying consistently expressed stress-responsive genes. F-box proteins typically function as part of the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes to precisely regulate gene expression and protein level, playing essential roles in the modulation of abiotic stress responses. Therefore, utilizing upland rice varieties for screening stress-responsive F-box genes is a highly advantageous approach.

View Article and Find Full Text PDF

Oncogenic mutations in the gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!