Significance: Optical coherence tomography (OCT) allows high-resolution volumetric three-dimensional (3D) imaging of biological tissues in vivo. However, 3D-image acquisition can be time-consuming and often suffers from motion artifacts due to involuntary and physiological movements of the tissue, limiting the reproducibility of quantitative measurements.
Aim: To achieve real-time 3D motion compensation for corneal tissue with high accuracy.
Approach: We propose an OCT system for volumetric imaging of the cornea, capable of compensating both axial and lateral motion with micron-scale accuracy and millisecond-scale time consumption based on higher-order regression. Specifically, the system first scans three reference B-mode images along the C-axis before acquiring a standard C-mode image. The difference between the reference and volumetric images is compared using a surface-detection algorithm and higher-order polynomials to deduce 3D motion and remove motion-related artifacts.
Results: System parameters are optimized, and performance is evaluated using both phantom and corneal (ex vivo) samples. An overall motion-artifact error of <4.61 microns and processing time of about 3.40 ms for each B-scan was achieved.
Conclusions: Higher-order regression achieved effective and real-time compensation of 3D motion artifacts during corneal imaging. The approach can be expanded to 3D imaging of other ocular tissues. Implementing such motion-compensation strategies has the potential to improve the reliability of objective and quantitative information that can be extracted from volumetric OCT measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232272 | PMC |
http://dx.doi.org/10.1117/1.JBO.27.6.066006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!