Impaired Membrane Lipid Homeostasis in Schizophrenia.

Schizophr Bull

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.

Published: September 2022

Background And Hypothesis: Multiple lines of clinical, biochemical, and genetic evidence suggest that disturbances of membrane lipids and their metabolism are probably involved in the etiology of schizophrenia (SCZ). Lipids in the membrane are essential to neural development and brain function, however, their role in SCZ remains largely unexplored.

Study Design: Here we investigated the lipidome of the erythrocyte membrane of 80 patients with SCZ and 40 healthy controls using ultra-performance liquid chromatography-mass spectrometry. Based on the membrane lipids profiling, we explored the potential mechanism of membrane phospholipids metabolism.

Study Results: By comparing 812 quantified lipids, we found that in SCZ, membrane phosphatidylcholines and phosphatidylethanolamines, especially the plasmalogen, were significantly decreased. In addition, the total polyunsaturated fatty acids (PUFAs) in the membrane of SCZ were significantly reduced, resulting in a decrease in membrane fluidity. The accumulation of membrane oxidized lipids and the level of peripheral lipid peroxides increased, suggesting an elevated level of oxidative stress in SCZ. Further study of membrane-phospholipid-remodeling genes showed that activation of PLA2s and LPCATs expression in patients, supporting the imbalance of unsaturated and saturated fatty acyl remodeling in phospholipids of SCZ patients.

Conclusions: Our results suggest that the mechanism of impaired membrane lipid homeostasis is related to the activated phospholipid remodeling caused by excessive oxidative stress in SCZ. Disordered membrane lipids found in this study may reflect the membrane dysfunction in the central nervous system and impact neurotransmitter transmission in patients with SCZ, providing new evidence for the membrane lipids hypothesis of SCZ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434453PMC
http://dx.doi.org/10.1093/schbul/sbac011DOI Listing

Publication Analysis

Top Keywords

membrane lipids
16
membrane
13
scz
10
impaired membrane
8
membrane lipid
8
lipid homeostasis
8
patients scz
8
oxidative stress
8
stress scz
8
lipids
7

Similar Publications

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

The effectiveness of bariatric surgery in reducing remnant cholesterol (RC) levels, particularly when obesity is accompanied by elevated glycated hemoglobin (HbA1c), is insufficiently investigated. In this study, we aimed to examine the impacts of two common bariatric procedures, Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), as regards their effects on RC and HbA1c levels. Adult morbidly obese subjects were included and assigned to receive either RYGB or SG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!