Early detection of COPD based on graph convolutional network and small and weakly labeled data.

Med Biol Eng Comput

Department of Respiratory, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, 100043, People's Republic of China.

Published: August 2022

AI Article Synopsis

  • * A new method utilizing a graph convolution network (GCN) analyzes weakly labeled chest CT images from a cancer screening database for early COPD detection.
  • * The GCN model achieved a performance accuracy of 0.77 and an area under the curve of 0.81, surpassing previous studies and demonstrating the effectiveness of using graph structures for this purpose.

Article Abstract

Chronic obstructive pulmonary disease (COPD) is a common disease with high morbidity and mortality, where early detection benefits the population. However, the early diagnosis rate of COPD is low due to the absence or slight early symptoms. In this paper, a novel method based on graph convolution network (GCN) for early detection of COPD is proposed, which uses small and weakly labeled chest computed tomography image data from the publicly available Danish Lung Cancer Screening Trial database. The key idea is to construct a graph using regions of interest randomly selected from the segmented lung parenchyma and then input it into the GCN model for COPD detection. In this way, the model can not only extract the feature information of each region of interest but also the topological structure information between regions of interest, that is, graph structure information. The proposed GCN model achieves an acceptable performance with an accuracy of 0.77 and an area under a curve of 0.81, which is higher than the previous studies on the same dataset. GCN model also outperforms several state-of-the-art methods trained at the same time. As far as we know, it is also the first time using the GCN model on this dataset for COPD detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244127PMC
http://dx.doi.org/10.1007/s11517-022-02589-xDOI Listing

Publication Analysis

Top Keywords

gcn model
16
early detection
12
detection copd
8
based graph
8
small weakly
8
weakly labeled
8
regions interest
8
copd detection
8
copd
6
early
5

Similar Publications

Introduction: Parkinson's disease (PD) is characterized by muscle stiffness, bradykinesia, and balance disorders, significantly impairing the quality of life for affected patients. While motion pose estimation and gait analysis can aid in early diagnosis and timely intervention, clinical practice currently lacks objective and accurate tools for gait analysis.

Methods: This study proposes a multi-level 3D pose estimation framework for PD patients, integrating monocular video with Transformer and Graph Convolutional Network (GCN) techniques.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative condition, notably impacts cognitive functions and daily activity. One method of detecting dementia involves a task where participants describe a given picture, and extensive research has been conducted using the participants' speech and transcribed text. However, very few studies have explored the modality of the image itself.

View Article and Find Full Text PDF

Background And Objective: Inferring large-scale brain networks from functional magnetic resonance imaging (fMRI) provides more detailed and richer connectivity information, which is critical for gaining insight into brain structure and function and for predicting clinical phenotypes. However, as the number of network nodes increases, most existing methods suffer from the following limitations: (1) Traditional shallow models often struggle to estimate large-scale brain networks. (2) Existing deep graph structure learning models rely on downstream tasks and labels.

View Article and Find Full Text PDF

This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.

View Article and Find Full Text PDF

MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!