Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNIT ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNIT also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. To obtain industrial nitrilase with vintage performance, we carried out engineering of BaNIT for simultaneous evolution of reaction specificity, enantioselectivity, and catalytic activity. The best variant V82L/M127I/C237S (BaNIT ) displayed higher enantioselectivity (E = 515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9%) compared with BaNIT . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L Escherichia coli cells harboring BaNIT as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNIT for efficient manufacturing of pregabalin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!