Vestigial-Like 3 Plays an Important Role in Osteoblast Differentiation by Regulating the Expression of Osteogenic Transcription Factors and BMP Signaling.

Calcif Tissue Int

Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, 246 Xuefu Road, Nangang, Harbin, 150001, Heilongjiang, People's Republic of China.

Published: September 2022

Our previous gene profiling analysis showed that the transcription cofactor vestigial-like 3 (VGLL3) gene expression was upregulated by mechanical tension in the mouse cranial suture, coinciding with accelerated osteoblast differentiation. Therefore, we hypothesized that VGLL3 plays a significant role in osteogenic differentiation. To clarify the function of VGLL3 in osteoblasts, we examined its expression characteristics in mouse bone tissue and the osteoblastic cell line MC3T3-E1. We further examined the effects of Vgll3 knockdown on osteoblast differentiation and bone morphogenetic protein (BMP) signaling. In the mouse cranial suture, where membranous ossification occurs, VGLL3 was immunohistochemically detected mostly in the nucleus of osteoblasts, preosteoblasts, and fibroblastic cells. VGLL3 expression in MC3T3-E1 cells was transient and peaked at a relatively early stage of differentiation. RNA sequencing revealed that downregulated genes in Vgll3-knockdown cells were enriched in gene ontology terms associated with osteoblast differentiation. Interestingly, most of the upregulated genes were related to cell division. Targeted Vgll3 knockdown markedly suppressed the expression of major osteogenic transcription factors (Runx2, Sp7/osterix, and Dlx5) and osteoblast differentiation. It also attenuated BMP signaling; moreover, exogenous BMP2 partially restore osteogenic transcription factors' expression in Vgll3-knockdown cells. Furthermore, overexpression of Vgll3 increased the expression of osteogenic transcription factors. These results suggest that VGLL3 plays a critical role in promoting osteoblast differentiation and that part of the process is mediated by BMP signaling. Further elucidation of VGLL3 function will increase our understanding of osteogenesis and skeletal disease etiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-022-00997-7DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
24
osteogenic transcription
16
bmp signaling
16
transcription factors
12
vgll3
10
plays role
8
differentiation
8
expression osteogenic
8
mouse cranial
8
cranial suture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!