A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and development of non-magnetic hierarchical actuator powered by shape memory alloy based bipennate muscle. | LitMetric

Actuators are ubiquitous to generate controlled motion through the application of suitable excitation force or torque to perform various operations in manufacturing and industrial automation. The demands placed on faster, smaller, and efficient actuators drive innovation in actuator development. Shape memory alloy (SMA) based actuators have multiple advantages over conventional actuators, including high power-to-weight ratio. This paper integrates the advantages of pennate muscle of a biological system and the unique properties of SMA to develop SMA-based bipennate actuator. The present study explores and expands on the previous SMA actuators by developing the mathematical model of the new actuator based on the bipennate arrangement of the SMA wires and experimentally validating it. The new actuator is found to deliver at least five times higher actuation forces (up to 150 N) in comparison to the reported SMA-based actuators. The corresponding weight reduction is about 67%. The results from the sensitivity analysis of the mathematical model facilitates customization of the design parameters and understanding critical parameters. This study further introduces an Nth level hierarchical actuator that can be deployed for further amplification of actuation forces. The SMA-based bipennate muscle actuator has broad applications ranging from building automation controls to precise drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232532PMC
http://dx.doi.org/10.1038/s41598-022-14848-wDOI Listing

Publication Analysis

Top Keywords

hierarchical actuator
8
shape memory
8
memory alloy
8
based bipennate
8
bipennate muscle
8
sma-based bipennate
8
mathematical model
8
actuation forces
8
actuator
7
actuators
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!