Research into practical applications of magnetic skyrmions, nanoscale solitons with interesting topological and transport properties, has traditionally focused on two dimensional (2D) thin-film systems. However, the recent observation of novel three dimensional (3D) skyrmion-like structures, such as hopfions, skyrmion strings (SkS), skyrmion bundles, and skyrmion braids, motivates the investigation of new designs, aiming to exploit the third spatial dimension for more compact and higher performance spintronic devices in 3D or curvilinear geometries. A crucial requirement of such device schemes is the control of the 3D magnetic structures via charge or spin currents, which has yet to be experimentally observed. In this work, we utilise real-space imaging to investigate the dynamics of a 3D SkS within a nanowire of CoZnMn at room temperature. Utilising single current pulses, we demonstrate current-induced nucleation of a single SkS, and a toggle-like positional switching of an individual Bloch point at the end of a SkS. The observations highlight the possibility to locally manipulate 3D topological spin textures, opening up a range of design concepts for future 3D spintronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232487PMC
http://dx.doi.org/10.1038/s41467-022-31335-yDOI Listing

Publication Analysis

Top Keywords

bloch point
8
skyrmion strings
8
room temperature
8
spintronic devices
8
toggle-like current-induced
4
current-induced bloch
4
point dynamics
4
skyrmion
4
dynamics skyrmion
4
strings room
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!