Background: Effective lung protective ventilation requires reliable, real-time estimation of lung volume at the bedside. Neonatal clinicians lack a readily available imaging tool for this purpose.
Objective: To determine the ability of lung ultrasound (LUS) of the dependent region to detect real-time changes in lung volume, identify opening and closing pressures of the lung, and detect pulmonary hysteresis.
Methods: LUS was performed on preterm lambs (n=20) during in vivo mapping of the pressure-volume relationship of the respiratory system using the super-syringe method. Electrical impedance tomography was used to derive regional lung volumes. Images were blindly graded using an expanded scoring system. The scores were compared with total and regional lung volumes, and differences in LUS scores between pressure increments were calculated.
Results: Changes in LUS scores correlated moderately with changes in total lung volume (r=0.56, 95% CI 0.47-0.64, p<0.0001) and fairly with right whole (r=0.41, CI 0.30-0.51, p<0.0001), ventral (r=0.39, CI 0.28-0.49, p<0.0001), central (r=0.41, CI 0.31-0.52, p<0.0001) and dorsal (r=0.38, CI 0.27-0.49, p<0.0001) regional lung volumes. The pressure-volume relationship of the lung exhibited hysteresis in all lambs. LUS was able to detect hysteresis in 17 (85%) lambs. The greatest changes in LUS scores occurred at the opening and closing pressures.
Conclusion: LUS was able to detect large changes in total and regional lung volume in real time and correctly identified opening and closing pressures but lacked the precision to detect small changes in lung volume. Further work is needed to improve precision prior to translation to clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763221 | PMC |
http://dx.doi.org/10.1136/archdischild-2022-323900 | DOI Listing |
In Vivo
December 2024
Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Background/aim: Congenital diaphragmatic hernia (CDH) is a critical condition affecting newborns, which often results in long-term morbidities, including neurodevelopmental delays, which affect cognitive, motor, and behavioral functions. These delays are believed to stem from prenatal and postnatal factors, such as impaired lung development and chronic hypoxia, which disrupt normal brain growth. Understanding the underlying mechanisms of these neurodevelopmental impairments is crucial for improving prognosis and patient outcomes, particularly as advances in treatments like ECMO have increased survival rates but also pose additional risks for neurodevelopment.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
Conventional fluorescent probes with weak fluorescence signals and aggregation-caused quenching effect limits in biomarkers detection, thus requiring many labeled target molecules to combine their output to achieve higher signal-to noise. Here, we harness a "immune-sandwich" based affinity sensor with development of ultrabright aggregation-induced emission luminogens (AIEgens) microspheres as signal reporter. The fabricated sensor can simultaneously permit triple detection formats by naked eye, spectrum, and computer vision counting (termed "NeSCV sensor").
View Article and Find Full Text PDFClin Nutr
December 2024
The Fourth Affiliated Hospital of Soochow University, Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China. Electronic address:
Background: The relationships between different dietary carbohydrates and risk of chronic obstructive pulmonary disease (COPD) have been rarely assessed. This study examined the relationships of different dietary carbohydrates with incident COPD and lung function, and the potential mediating role of chronic inflammation.
Methods: A total of 205,752 UK Biobank participants were included.
Sci Rep
December 2024
Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China.
HDAC3 has been demonstrated to play a crucial role in the progression of various tumors and the differentiation and development of T cells. However, its impact on peripheral T cells in the development of murine lung cancer remains unclear. In this experiment, a subcutaneous lung tumor model was established in C57BL/6 mice, and tumor-bearing mice were treated with the specific inhibitor of HDAC3, RGFP966, at different doses to observe changes in tumor size.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi, 15355, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!