Mitochondrial-derived vesicles: Gatekeepers of mitochondrial response to oxidative stress.

Free Radic Biol Med

Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, Henan Province, PR China. Electronic address:

Published: August 2022

AI Article Synopsis

  • Mitochondrial quality control (MQC) involves mechanisms that maintain mitochondrial health and function, crucial for cell survival.
  • Mitochondrial-derived vesicles (MDVs) play a key role in this process by transporting damaged materials for degradation and protecting against oxidative stress.
  • Disruption of MDV function can lead to various diseases, including neurodegeneration and cancer, and understanding MDV regulation may offer new therapeutic opportunities.

Article Abstract

Mitochondrial quality control (MQC) mechanisms are a series of adaptive responses that ensure the relative stability of mitochondrial morphology, quantity, and quality to preserve cellular survival and function. While MQC mechanisms range from mitochondrial biogenesis and fusion/fission to mitophagy, mitochondrial-derived vesicles (MDVs) may represent an essential component of MQC. MDVs precede mitochondrial autophagy and serve as the first line of defense against oxidative stress by selectively transferring damaged mitochondrial substances to the lysosome for degradation. In fact, the function of MDVs is dependent on the cargo, the shuttle route, and the ultimate destination. Abnormal MDVs disrupt metabolite clearance and the immune response, predisposing to pathological conditions, including neurodegeneration, cardiovascular diseases, and cancers. Therefore, MDV regulation may be a potential therapeutic for the therapy of these diseases. In this review, we highlight recent advances in the study of MDVs and their misregulation in various diseases from the perspectives of formation, cargo selection, regulation, and transportation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.06.233DOI Listing

Publication Analysis

Top Keywords

mitochondrial-derived vesicles
8
oxidative stress
8
mqc mechanisms
8
mitochondrial
6
mdvs
5
vesicles gatekeepers
4
gatekeepers mitochondrial
4
mitochondrial response
4
response oxidative
4
stress mitochondrial
4

Similar Publications

Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.

View Article and Find Full Text PDF

Continuity of Mitochondrial Budding: Insights from BS-C-1 Cells by In Situ Cryo-electron Tomography.

Microsc Microanal

January 2025

The Laboratory for Biomolecular Structures, Brookhaven National Laboratory, Upton, NY 11973, USA.

Mitochondrial division is a fundamental biological process essensial for cellular functionality and vitality. The prevailing hypothesis that dynamin related protein 1 (Drp1) provides principal control in mitochondrial division, in which it also involves the endoplasmic reticulum (ER) and the cytoskeleton, does not account for all the observations. Therefore.

View Article and Find Full Text PDF

Oxidative Stress, Lysosomal Permeability, and Mitochondrial-Derived Vesicles Induced in NL-20 Human Bronchial Cells Exposed to Benzo[ghi]Perylene.

Toxicol In Vitro

December 2024

Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico. Electronic address:

Benzo[ghi] perylene (b[ghi]p) is classified as non-carcinogenic to humans, and there are currently no occupational exposure models available to identify its effects. The aim of this work was to evaluate the effect of b[ghi]p on the lysosomes of NL-20 cells (a human bronchial cell line) exposed to 4.5 μM for 3 h.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses.

View Article and Find Full Text PDF

Mutual interaction between doxorubicin (DOX) and cardiomyocytes is crucial for cardiotoxicity progression. Cardiomyocyte injury is an important pathological feature of DOX-induced cardiomyopathy, and its molecular pathogenesis is multifaceted. In addition to the direct toxic effects of DOX on cardiomyocytes, DOX-induced exosomes in the extracellular microenvironment also regulate the pathophysiological states of cardiomyocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!