Nurdles, also known as plastic resin pellets, are now a major source of plastic pollution on beaches globally, thus it is important to elucidate their weathering patterns and environmental fates as well as the associated pollutants. In this study we collected nurdles from 24 sites in the coastal bend region of south Texas, covering areas from the near shore railway stations to the adjacent bays and barrier islands. The morphologies of nurdles and associated pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and mercury, were investigated. The results showed that the nurdles varied greatly in color, shape, polymer composition, and oxidation degree. More than 80 % of the nurdles were made with polyethylene, and the rest with polypropylene, polyester, polystyrene, polyethylene-vinyl acetate, and polyvinyl chloride based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. PCBs were not detected on nurdles. PAHs and mercury on nurdles were detected at 12 % and 20 % of the sampling sites. The total concentrations of detectable PAHs ranged from 92.59 to 1787.23 ng/g-nurdle, and the detectable mercury concentrations ranged from 1.23 to 22.25 ng/g-nurdle. Although the concentrations of these pollutants were not at the acute toxic effect level, the presence of PAHs and mercury suggested the potential risk of pollutant exposure to marine organisms in ecosystems, given the fact that nurdles are persistent in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156826 | DOI Listing |
Sci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFSci Rep
December 2024
Hebei Provincial Key Laboratory of Orthopaedic Biomechanics, Hebei Orthopaedic Research Institute, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
To investigate the population distribution characteristics of elderly osteoporosis fracture patients in Hebei Province and analyze the effects of air pollutants on elderly osteoporosis fractures, We retrospectively collected 18,933 cases of elderly osteoporosis fractures from January 1, 2019, to December 31, 2022, from four hospitals in Hebei Province. The average age was 76.44 ± 7.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Record breaking atmospheric methane growth rates were observed in 2020 and 2021 (15.2±0.5 and 17.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China.
View Article and Find Full Text PDFNat Commun
December 2024
School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
Fine particulate matter has been linked with acute coronary syndrome. Nevertheless, the key constituents remain unclear. Here, we conduct a nationwide case-crossover study in China during 2015-2021 to quantify the associations between fine particulate matter constituents (organic matter, black carbon, nitrate, sulfate, and ammonium) and acute coronary syndrome, and to identify the critical contributors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!