Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287678 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2022.05.020 | DOI Listing |
PLoS One
January 2025
Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America.
The Zebrafish International Resource Center (ZIRC) is an NIH-funded national stock center and germplasm repository that maintains and distributes genetically modified and wild-type zebrafish (Danio rerio) lines to the biomedical research community. The ZIRC and its community would benefit from incorporating somatic cell nuclear transfer (SCNT) cloning which would allow the preservation of diploid genomes. The goal of this study was to advance a zebrafish SCNT cloning protocol into a reproducible community-level pathway by use of process mapping and simulation modeling approaches to address training requirements, process constraints, and quality management gaps.
View Article and Find Full Text PDFTheriogenology
December 2024
College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Developmental abnormalities are more common in somatic cell nuclear transfer (SCNT) embryos due to epigenetic barriers that occur during the maternal-to-zygotic transition (MZT). N6-methyladenosine (m6A) is an RNA epigenetic modification that plays a significant role in numerous biological processes. However, the relationship between m6A and SCNT embryonic development is largely unexplored.
View Article and Find Full Text PDFTheriogenology
February 2025
Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand. Electronic address:
The future of reproductive biotechnologies in water buffalo in Southeast Asian countries holds significant promise for enhancing genetic quality and productivity. Fixed-time artificial insemination remains the commonly used technology, with advances in assisted reproductive technologies (ART) such as in vitro embryo production (IVEP), embryo transfer (ET), and the use of sex-sorted sperm increasingly adopted to improve breeding efficiency. These technologies overcome traditional breeding limitations, such as low reproductive rates, genetic diversity constraints, and the production of sex-predetermined offspring.
View Article and Find Full Text PDFTheriogenology
January 2025
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; College of Medicine, Hainan Vocational University of Science and Technology, Haikou, 571126, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China. Electronic address:
Somatic Cell Nuclear Transfer (SCNT) has transformed animal genetic improvement, gene-editing in model production, xenotransplantation, and conservation efforts for endangered species. However, SCNT-derived embryos occasionally display developmental abnormalities, and following embryo transfer, the miscarriage rate is high. Gene-edited fetuses may experience birth defects, resulting in decreased survival rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!