Antibiotics accumulate in soils via various agricultural activities, endangering soil biota that play fundamental roles in maintaining agroecosystem function. However, the effects of land-use heterogeneity on soil biota tolerance to antibiotic stresses are not well understood. In this study, we explored the relationships between antibiotic residues, bacterial communities, and earthworm populations in areas with different land-use types (forest, maize, and peanut fields). The results showed that antibiotic levels were generally higher in maize and peanut fields than in forests. Furthermore, land use modulated the effects of antibiotics on soil bacterial communities and earthworm populations. Cumulative antibiotic concentrations in peanut fields were negatively correlated with bacterial diversity and earthworm abundance, whereas no significant correlations were detected in maize fields. In contrast, antibiotics improved bacterial diversity and richness in forest soils. Generally, earthworm populations showed stronger tolerance to antibiotics than did soil bacterial communities. Agricultural land use differentially modified the responses of the soil bacterial community and earthworm population to antibiotic contamination, and earthworms might provide an alternative for controlling antibiotic contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129350 | DOI Listing |
PeerJ
December 2024
Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde City, Hebei Province, China.
Rhizosphere microorganisms are important factors affecting herb quality and secondary metabolite accumulation. In this study, we investigated the diversity of rhizosphere microbial communities (bacteria and fungi) and their correlations with soil physicochemical properties and active compounds of (baicalin, oroxindin, baicalein, wogonin, and oroxylin A) from cultivated with three different origins high-throughput sequencing and correlation analysis to further clarify the role of soil factors in the accumulation of the active compounds of . The results are summarized as follows.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
In mountainous regions, global warming has changed the biological diversity and community structure of both aboveground and belowground organisms, and it may cause biota to move from lower altitudes to higher altitudes. However, our understanding of such migrations of soil mesofauna caused by global warming on soil processes and functions remains limited. We carried out a 79-day experiment comprising treatments without mesofauna (WM), native mesofauna (NM), migratory mesofauna (MM), and both native and migratory mesofauna together (TM) to reveal the effects of soil mesofauna migration on greenhouse gas emissions, ecosystem multifunctionality, and the underlying mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.
View Article and Find Full Text PDFTree Physiol
December 2024
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!