The disclosed study reveals isolation, characterization and anticancer evaluation of . The extracts and isolated compounds were used for cytotoxic activity against (lung (A549), pancreatic (MIAPaCa), colon (HCT-116), breast (MDA-MB-231) and breast (MDA-MB-468) cell lines. The extracts were screened for cytotoxicity using MTT colorimetric assay. Out of all extracts, methanolic (30) %: chloroform fraction (TAW6) with 75.01% inhibition at a concentration 100 µg/mL was observed. The selected extracts were further processed for column chromatography and led to isolation of seven compounds (A to G). The structural determination of isolated compounds was carried out using HNMR, CNMR, IR and HRMS. All the isolates were tested for cytotoxic activity and compound B was found most active with IC values 11.29 µg against HCT-116 (Colon). The compound B was then used for detailed study via and . Thus the significant anticancer activity particularly against colon cancerous cell lines recommends that the ( could act as a potential drug candidate for cancer, more particularly for colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2022.2092864DOI Listing

Publication Analysis

Top Keywords

cytotoxic activity
12
cell lines
12
isolated compounds
8
isolation characterisation
4
characterisation pharmaceutically
4
pharmaceutically versatile
4
versatile molecules
4
molecules evaluation
4
evaluation cytotoxic
4
activity
4

Similar Publications

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

Discovery of a 2'-α-Fluoro-2'-β--(fluoromethyl) Purine Nucleotide Prodrug as a Potential Oral Anti-SARS-CoV-2 Agent.

J Med Chem

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.

View Article and Find Full Text PDF

The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10).

View Article and Find Full Text PDF

4-O-Methylglucuronoxylan from Hygrophila Ringens var. Ringens Seeds: Chemical Composition and Anti-Inflammatory Activity.

Macromol Biosci

January 2025

Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743, Jena, Germany.

Hygrophila ringens var. ringens is a medicinal plant of the Acanthaceae family. A soluble polysaccharide is extracted from H.

View Article and Find Full Text PDF

Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!