The coordinated efforts to stop the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) include massive immunization of the population at a global scale. The humoral immunity against COVID-19 is conferred by neutralizing antibodies (NAbs) that occur during the post-infection period and upon vaccination. Here, we provide robust data showing that potent neutralizing antibodies are induced in convalescent patients of SARS-CoV-2 infection who have been immunized with different types of vaccines, and patients with no previous history of COVID-19 immunized with a mixed vaccination schedule regardless of the previous infection. More importantly, we showed that a heterologous prime-boost in individuals with Ad5-nCoV (Cansino) vaccine induces higher NAbs levels in comparison to a single vaccination scheme alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231729PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269032PLOS

Publication Analysis

Top Keywords

neutralizing antibodies
12
antibodies levels
4
levels increased
4
increased individuals
4
individuals heterologous
4
vaccination
4
heterologous vaccination
4
vaccination hybrid
4
hybrid immunity
4
immunity ad5-ncov
4

Similar Publications

Seeking innovative concepts in development of antiviral drug combinations.

Antiviral Res

January 2025

Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway.

Antiviral drugs are crucial for managing viral infections, but current treatment options remain limited, particularly for emerging viruses. These drugs can be classified based on their chemical composition, including neutralizing antibodies (nAbs), recombinant human receptors (rhRs), antiviral CRISPR/Cas systems, interferons, antiviral peptides (APs), antiviral nucleic acid polymers, and small molecules. Some of these agents target viral factors, host factors, or both.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Background/objectives: This study aimed to determine the percentage and duration of neutralizing antibodies against the Omicron variant in human milk after vaccination against SARS-CoV-2, considering the three different vaccine technologies approved in Brazil.

Methods: A cross-sectional study was conducted with lactating women who received the complete vaccination cycle with available vaccines (AstraZeneca, Pfizer, CoronaVac, and Janssen). The participants resided in Rio de Janeiro, and samples were collected from April to October 2022.

View Article and Find Full Text PDF

Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKV, rJEV/ZIKV, and rJEV/ZIKV), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKV exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKV and rJEV/ZIKV, as well as their vector, rJEV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!