Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A holistic understanding of dynamic scenes is of fundamental importance in real-world computer vision problems such as autonomous driving, augmented reality and spatio-temporal reasoning. In this paper, we propose a new computer vision benchmark: Video Panoptic Segmentation (VPS). To study this important problem, we present two datasets, Cityscapes-VPS and VIPER together with a new evaluation metric, video panoptic quality (VPQ). We also propose VPSNet++, an advanced video panoptic segmentation network, which simultaneously performs classification, detection, segmentation, and tracking of all identities in videos. Specifically, VPSNet++ builds upon a top-down panoptic segmentation network by adding pixel-level feature fusion head and object-level association head. The former temporally augments the pixel features while the latter performs object tracking. Furthermore, we propose panoptic boundary learning as an auxiliary task, and instance discrimination learning which learns spatio-temporally clustered pixel embedding for individual thing or stuff regions, i.e., exactly the objective of the video panoptic segmentation problem. Our VPSNet++ significantly outperforms the default VPSNet, i.e., FuseTrack baseline, and achieves state-of-the-art results on both Cityscapes-VPS and VIPER datasets. The datasets, metric, and models are publicly available at https://github.com/mcahny/vps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2022.3183440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!