Several tools have been developed for calling variants from next-generation sequencing (NGS) data. Although they are generally accurate and reliable, most of them have room for improvement, especially regarding calling variants in datasets with low read depth. In addition, the somatic variants predicted by several somatic variant callers tend to have very low concordance rates. In this study, we developed a new method (RDscan) for improving germline and somatic variant calling in NGS data. RDscan removes misaligned reads, repositions reads, and calculates based on the read depth distribution. With , RDscan improves the precision of variant callers by removing false-positive variant calls. When we tested our new tool using the latest variant calling algorithms and data from the 1000 Genomes Project and Illumina's public datasets, accuracy was improved for most of the algorithms. After screening variants with RDscan, calling accuracies increased for germline variants in 11 of 12 cases and for somatic variants in 21 of 24 cases. RDscan is simple to use and can effectively remove false-positive variants while maintaining a low computation load. Therefore, RDscan, along with existing variant callers, should contribute to improvements in genome analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2021.0269DOI Listing

Publication Analysis

Top Keywords

somatic variant
12
variant calling
12
read depth
12
variant callers
12
improving germline
8
germline somatic
8
based read
8
depth distribution
8
calling variants
8
ngs data
8

Similar Publications

Kaposiform lymphangiomatosis (KLA) is a rare and aggressive subtype of complex lymphatic anomalies (CLA), characterized by abnormal lymphatic proliferation leading to distinct clinical manifestations. Despite the complexity of this condition, there is no established standard therapy, and treatment options such as sclerotherapy, laser therapy, and surgery remain variably effective and are limited to symptom management rather than curative. Sirolimus, an mTOR pathway inhibitor, has shown promise as a primary therapy, particularly in patients without a driver mutation.

View Article and Find Full Text PDF

We describe the phenotypic and genotypic spectrum of patients with vascular anomaly (VA) in a paediatric multi-disciplinary VA clinic. We measured the clinical utility of genotyping by comparing pre and posttest diagnosis and management. A 46-month retrospective analysis occurred for 250 patients offered genetic testing in the VA clinic.

View Article and Find Full Text PDF

Background: Ovarian Cancer is one of the leading causes of cancer death among women worldwide and the therapeutic landscape to treat it is constantly evolving. One of the major points of decision for the treatment choice is the presence of some genomic alterations that could confer sensitivity to the new available therapies including inhibitors of poly (ADP-ribose) polymerase (PARPi) with BRCA1 and 2 genes playing the most important role.

Methods And Results: We performed the search for any somatic and/or germline alteration in patient's samples by next generation sequencing (NGS).

View Article and Find Full Text PDF

Mutation impact on mRNA versus protein expression across human cancers.

Gigascience

January 2025

Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Background: Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation.

View Article and Find Full Text PDF

FMS-like tyrosine kinase 3 (FLT3) genetic variants are commonly seen in high-grade myeloid neoplasms and are typically gain-of-function mutations associated with a proliferative disease phenotype. Inactivating FLT3 variants have been less frequently described in non-malignant, autoimmune disorders and are uncommon in aplastic anemia (AA). Herein, we report the first to our knowledge, and unusual case of a germline, gain-of-function, FLT3 variant in a patient with severe AA treated successfully with immunosuppressive therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!