To understand the importance of terrestrial solar exposure on human skin, not only individual spectral components need to be considered in biomedical studies, but also the relevance of the combined action profile of the complete solar spectrum (cSS) must be established. We therefore developed a novel irradiation device that combines the emission of four individual lamps (UVB, UVA, VIS and nIR) to achieve exposure from 280 to 1400 nm with individual controllable lamps. The integrated irradiance of each spectral band is similar to the solar spectrum. The lamps can be utilised individually or in any desired combination. Here we present the design, realisation, and validation of this irradiation device as well as biological results on cellular metabolism (MTT assay), cell cycle alterations, and clonogenic growth in HaCaT cells after exposures to the individual spectral bands as well as their simultaneous combinations. Thereby, we demonstrate that UVB combined with UVA is the main determinant for the metabolic activity within cSS. Also, UVB-dependent effects dominate cell cycle regulation in cSS, whilst UVA and nIR have little influence. Lastly, also clonogenic growth is dominated by the UVB action profile in cSS, despite nIR showing modulatory activity when applied in combination with UVB. Together, this highlights the regulatory influence of the different spectral bands on the three biological endpoints and demonstrates their modulation when being part of the complete solar spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-022-00252-wDOI Listing

Publication Analysis

Top Keywords

solar spectrum
16
irradiation device
12
spectral bands
12
biomedical studies
8
individual spectral
8
action profile
8
complete solar
8
cell cycle
8
clonogenic growth
8
solar
5

Similar Publications

Solar-Driven Thermally Regenerative Electrochemical Cells for Continuous Power Generation with Coupled Optical and Thermal Integration.

ACS Appl Mater Interfaces

January 2025

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.

View Article and Find Full Text PDF

Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.

View Article and Find Full Text PDF

The Space Radiobiological Exposure Facility (SREF) is a general experimental facility at the China Space Station for scientific research in the fields of space radiation protection, space radiation biology, biotechnology, and the origin of life. The facility provides an environment with controllable temperatures for experiments with organic molecules and model organisms such as small animals, plant seeds, and microorganisms. The cultivation of small animals can be achieved in the facility with the use of microfluidic chips and images and videos of such experiments can be captured by microscopy.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Photo-thermo-electric conversion devices represent a promising technology for converting solar energy into electrical energy. Photothermal materials, as a critical component, play a significant role in efficient conversion from solar energy into thermal energy and subsequently electrical energy, thereby directly influencing the overall system's efficiency in solar energy utilization. However, the application of single-component photothermal materials in photo-thermo-electric conversion systems remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!