A facile synthesis of 1-imidazoles by direct oxidative annulation of aryl methyl ketones and primary amines has been developed in the presence of TEMPO under weakly acidic conditions. By replacing amines with ammonium acetate, 2-imidazole skeletons were achieved for the first time from ketones. Substrates containing various functional groups, such as alkyl, aryl, naphthyl, halogen (F, Cl, Br, I), nitro, trifluoromethyl, sulfonyl ester, furyl, thienyl, and pyridyl groups, were readily transformed into the desired products. The application potential of this method was verified by the scale-up synthesis and Sonogashira coupling functionalization of imidazoles. Mechanistically, the α-TEMPO-enamine adduct may serve as the key reaction intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2ob00828a | DOI Listing |
Chem Asian J
January 2025
Xiamen University, Department of Chemistry, Xiamen University, Lujiaxi Building Room 742, 361005, xiamen, CHINA.
The direct construction of polycyclic arenes through ring formation using simple building blocks is highly appealing but remains challenging in organic chemistry. In this study, we introduce an efficient cascade reaction that combines dearomatizing photocyclization with oxidative aromatization, driven by organophotocatalysis. Conducted under mild, transition-metal-free conditions, this reaction seamlessly converts styrene derivatives into a diverse array of functionalized polycyclic aromatic compounds with good yields and regioselectivity.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
An isostructural series of four annulated actinocene complexes, M(hdcCOT) (M = Th, U, Np, Pu), is reported. The syntheses proceed through a trivalent starting material when M = U, Np, Pu with subsequent oxidation or, in the case of M = Th, directly from ThCl(DME). X-ray crystallography shows that each actinocene has molecular point symmetry in the solid state, with the metal atoms symmetrically bonded to two 10π-aromatic [8]annulene dianion rings.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoy Street, 22, Ekaterinburg 620137, Russia.
The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFOrg Lett
January 2025
China Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, and Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
Herein, a one-pot domino catalyzed three-component process is described, which is initiated by a palladium/zinc cooperatively catalyzed cycloaddition between trimethylenemethane (TMM) and unactivated alkyl/aryl imines, followed by one-pot isomerization and Zn(OTf)-catalyzed DDQ oxidation, furnishing valuable substituted pyrroles. We disclose that the palladium/zinc cooperative catalysis affords a dual-Zn(OTf)-stabilized azapalladacycle, wherein the Pd-N bond is polarized by Zn(OTf), facilitating a unique outer-sphere allylic amination. Moreover, subsequent DDQ dehydrogenation can be feasibly promoted by zinc catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!