Synthesis of tetrasubstituted allenes a 1,4-palladium migration/carbene insertion/β-H elimination sequence.

Org Biomol Chem

The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Published: July 2022

A palladium-catalyzed synthesis of tetrasubstituted allenes from aryl bromides and aryl diazoacetates is developed. This transformation proceeded an aryl to alkenyl 1,4-palladium migration/carbene insertion/β-H elimination sequence under mild reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ob00751gDOI Listing

Publication Analysis

Top Keywords

synthesis tetrasubstituted
8
tetrasubstituted allenes
8
14-palladium migration/carbene
8
migration/carbene insertion/β-h
8
insertion/β-h elimination
8
elimination sequence
8
allenes 14-palladium
4
sequence palladium-catalyzed
4
palladium-catalyzed synthesis
4
allenes aryl
4

Similar Publications

Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines.

J Am Chem Soc

December 2024

State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.

View Article and Find Full Text PDF

Electrochemical Reductive Bimolecular Cycloaddition of 2-Arylideneindane-1,3-diones for the Synthesis of Spirocyclopentanole Indane-1,3-diones.

J Org Chem

December 2024

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.

An electrochemical reductive bimolecular cycloaddition of 2-arylideneindane-1,3-diones has been reported for the synthesis of spirocyclopentanole indane-1,3-diones bearing five contiguous stereocenters with vicinal tetrasubstituted stereocenters, especially involving a quaternary carbon center, in moderate to good yields and excellent diastereoselectivities. The present protocol features mild reaction conditions, no external chemical redox reagents, excellent atom economy, and gram-scale synthesis. In addition, a mechanistic investigation indicates that the reactions proceed through a radical pathway.

View Article and Find Full Text PDF

Pd/Brønsted Acid Co-catalyzed Dehydrative Coupling of Propargylic Alcohols with Diarylphosphine Oxides.

Org Lett

December 2024

Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China.

An efficient dehydrative coupling of propargylic alcohols with diarylphosphine oxides to construct tetrasubstituted allenylphosphoryl compounds in the presence of a Pd/Brønsted acid co-catalyst has been developed. As a benefit from the use of a Brønsted acid, this reaction could perform under mild conditions with excellent yields, accommodating a wide range of functional groups. The potential utility of this method has also been demonstrated.

View Article and Find Full Text PDF

Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!