The direct regeneration technology has been developed because of its short-range, high efficiency, and green characteristics. However, the existing direct regeneration method is hardly applied in collaborative reconstruction of the damaged crystal and particle of spent polycrystalline layered materials. The single-crystal regeneration with restructuring the morphology and crystal structure was herein achieved for the first time by low-temperature lithium supplementation followed with high-temperature molten salt conversion, which could effectively solve the structural defects of spent polycrystalline layered materials. We found that the realization of single-crystal regeneration with the molten salt process is attributable to that the original crystal growth of primary particles in the polycrystal transfer to the subsequent division along the grain boundary. At the test conditions of 25 °C and 2.8-4.3 V, the capacity retention capacity of the regenerated single-crystal materials reach 83.3% after 200 cycles at 1 C, which is much higher than 20.0% for conventional direct lithiation regeneration and 61.6% for low-temperature molten salt regeneration. Interestingly, the regenerated single-crystal NCM622 in the graphite full-cell test displays a capacity retention rate of 85.24% after 800 cycles at a rate of 1 C at 2.5-4.35 V. This work opens up a new way for the direct regeneration of spent polycrystalline layered cathode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c06351 | DOI Listing |
Adv Exp Med Biol
January 2025
Department of Optometry, University of Benin, Benin City, Nigeria.
Contact lenses have become integral tools in the realm of ocular therapeutics, extending beyond their primary function of refractive correction to encompass a diverse array of therapeutic applications. This review explores the evolving role of contact lenses in managing various ocular conditions, highlighting their efficacy in enhancing patient outcomes. Initially developed to correct refractive errors, contact lenses now serve as effective vehicles for delivering medications directly to the ocular surface, offering targeted treatment for conditions such as dry eye syndrome and corneal ulcers.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea.
The increasing demand for Li-ion batteries across various energy storage applications underscores the urgent need for environmentally friendly and efficient direct recycling strategies to address the issue of substantial cathode waste. Diverse reducing agents for Li supplements, such as quinone molecules, have been considered to homogenize the Li distribution in the cathode materials obtained after cycling; however, the detailed reaction mechanism is still unknown. Herein, the ideal electrochemical potential factor and reaction mechanism of the redox mediator 3,5-di-tert-butyl-o-benzoquinone (DTBQ) for the chemical relithiation of high-Ni-layered cathodes are elucidated.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, FI, Italy.
Background: Growth Differentiation Factor 15 (GDF15) has been described as influencing skeletal physiology. Nevertheless, no systematic appraisal of the effect of GDF15 on skeletal muscle tissues has been developed to the present day.
Objective: The aim of the present work was to review the evidence on the topic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!