Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw.

Environ Sci Technol

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Published: July 2022

AI Article Synopsis

  • Warming of the climate accelerates permafrost thaw, potentially increasing soil respiration (Rs) and creating a feedback loop that intensifies climate change.
  • Research conducted on the Tibetan Plateau examined how Rs and its components—autotrophic (Ra) and heterotrophic (Rh) respiration—change as permafrost thaws, revealing that Ra increases over time while Rh follows a hump-shaped pattern.
  • The study identified different factors influencing these changes: plant community structure and root characteristics affect Ra, while soil substrate quality and microbial diversity impact Rh, highlighting the need to incorporate these dynamics into climate models for improved predictions about permafrost carbon feedback.

Article Abstract

Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.e., Ra and Rh) with biotic (e.g., plant functional traits and soil microbial diversity) and abiotic factors (e.g., substrate quality). We found that Ra and Rh exhibited divergent responses to permafrost collapse: Ra increased with the time of thawing, while Rh exhibited a hump-shaped pattern along the thaw sequence. We also observed different drivers of thaw-induced changes in the ratios of Ra:Rs and Rh:Rs. Except for soil water status, plant community structure, diversity, and root properties explained the variation in Ra:Rs ratio, soil substrate quality and microbial diversity were key factors associated with the dynamics of Rh:Rs ratio. Overall, these findings demonstrate divergent patterns and drivers of Rs components as permafrost thaw prolongs, which call for considerations in Earth system models for better forecasting permafrost carbon-climate feedback.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c07575DOI Listing

Publication Analysis

Top Keywords

permafrost thaw
20
autotrophic heterotrophic
8
components permafrost
8
thaw sequence
8
microbial diversity
8
substrate quality
8
permafrost
7
thaw
6
soil
5
divergent trajectory
4

Similar Publications

Investigating effects of thermokarst lakes on permafrost under equilibrium conditions.

Sci Total Environ

December 2024

Department of Civil Engineering, Queen's University, 99 University Ave, Kingston K7L3N5, ON, Canada. Electronic address:

The degradation of permafrost due to climate change has significant effects on the hydrological processes and ecosystems in arctic and subarctic regions. Thermokarst lakes, formed from permafrost thaw and subsidence, play a crucial role in this process by influencing heat storage and exchange and accelerating the thaw rate of the surrounding permafrost. A direct effect of these lakes is the formation of taliks, perennially thawed soil.

View Article and Find Full Text PDF

Changes and collapse in lacustrine system in Antarctic Peninsula ice-free area: Boeckella and Buenos Aires lakes.

An Acad Bras Cienc

December 2024

Instituto Antártico Argentino, 25 de Mayo 1143, San Martín, Prov. Buenos Aires, Argentina.

Some Antarctic ice-free areas have been affected by changes in lacustrine zones and permafrost thawing due to rising air temperatures over the last 60 years Temperature time-series were analyzed to understand the processes leading to the changes of Boeckella and Buenos Aires lakes, north Antarctic Peninsula. Statistical calculations were applied to average, maximum, and minimum temperatures, as well as to indexes such as Positive Degrees Day, Freezing/Thaw Day, and days with temperatures ≥ 0 °C and ≥ 10 °C. Changes in the region over recent decades were observed in mean and maximum temperatures and an increase in minimum temperature since the mid-1990s.

View Article and Find Full Text PDF

Climate change is expected to alter the input of nitrogen (N) sources in the Eastern Canadian Arctic Archipelago and Baffin Bay due to increased discharge from glacial meltwater and permafrost thaw. Since dissolved inorganic N is generally depleted in surface waters, dissolved organic N (DON) could represent a significant N source fueling phytoplankton activity in Arctic ecosystems. Yet, few DON data for this region exist.

View Article and Find Full Text PDF

Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play-for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines-have received less attention, preventing assessments of these processes' impacts compared to and combined with coastal erosion.

View Article and Find Full Text PDF

(Dis)connecting the Globe Through Water-Driven Ecological and Biogeochemical Corridors in the Polar-Alpine Biome.

Glob Chang Biol

December 2024

Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

Global change is causing the melting of ice masses, permafrost thawing, and the shrinking of glaciers, thereby reshaping nature's rhythms. Longer thaw phases and more frequent dry periods are transforming water-driven transitional ecosystems (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: