AI Article Synopsis

  • - The study explores the use of solution-processed thermally activated delayed fluorescence (TADF) exciplexes as a hole transport layer (HTL) in blue quantum dot light-emitting diodes (QLEDs), combining polymer donors (PVK) with small molecular acceptors (T2T).
  • - The PVK:T2T HTL effectively captures and transfers exciton energy from QDs by forming exciplex excitons, improving energy transfer to QD emitters through Förster resonance energy transfer.
  • - Incorporating TADF exciplexes significantly boosts the current efficiency (CE) and external quantum efficiency (EQE) of blue QLEDs, demonstrating their potential for enhancing QLED performance

Article Abstract

Solution-processed thermally activated delayed fluorescence (TADF) exciplexes were employed as the hole transport layer (HTL) of blue quantum dot (QD) light-emitting diodes (QLEDs) by blending polymer donors of poly(N-vinylcarbazole) (PVK) with small molecular acceptors of 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T). As a result, the PVK:T2T HTL can harvest holes and electrons leaking from the QD active layer to form exciplex excitons and then this harvested exciton energy can be effectively transferred to the adjacent QD emitters through the Förster resonance energy-transfer process. Furthermore, the TADF exciplexes can enhance the hole mobility of the HTL due to the charge transfer process from the PVK donor to the T2T acceptor under an external electric field. The maximum current efficiency (CE) and external quantum efficiency (EQE) of the fabricated blue ZnCdS/ZnS core/shell QLEDs increase from 4.14 cd A and 7.33% for the PVK HTL to 7.73 cd A and 13.66% for the PVK:(5 wt%)T2T HTL, respectively. Our results demonstrate that the TADF exciplex HTL would be a facile strategy to design high-performance blue QLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01777fDOI Listing

Publication Analysis

Top Keywords

light-emitting diodes
8
hole transport
8
transport layer
8
tadf exciplexes
8
htl
6
highly efficient
4
blue
4
efficient blue
4
blue quantum-dot
4
quantum-dot light-emitting
4

Similar Publications

This study examined the impacts of different LED spectra on the growth of in vitro cultures of Musa acuminata cv. red banana and their biochemical profile, including the antioxidant enzymes catalase and ascorbate peroxidase, photosynthetic pigment and accumulation of total carbohydrate content. The far-red LEDs significantly increase shoot elongation (10.

View Article and Find Full Text PDF

Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layers.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.

View Article and Find Full Text PDF

Luminescence of NaLaMgWO doped with lanthanide activators Tb, Eu and Er are reported. These activators exhibit characteristic emission spectra. Either the emission colour or the excitation spectrum distinguishes between these activators.

View Article and Find Full Text PDF

B- and N-heterocyclic fluorophores have reveal promising efficiency in blue organic light-emitting diodes (OLEDs) with small full-width-at-half-maximum (FWHM). However, their structural determinants for spectral broadening and operating stability are still needed to be investigated in further. Herein, a novel multi-N-heterocycles Diindolo[3,2,1jk:3',2',1'jk]dicarbazole[1,2-b:4,5-b] (DIDCz) is proposed to manipulate the emission color toward pure blue region by extending π-conjugation of the N-π-N bridge.

View Article and Find Full Text PDF

Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.

Mater Horiz

January 2025

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, P. R. China.

Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!