Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The variation of the vertical component distribution can significantly influence the photovoltaic performance of organic solar cells (OSCs), mainly due to its impact on exciton dissociation and charge-carrier transport and recombination. Herein, binary devices are fabricated via sequential deposition (SD) of D18 and L8-BO materials in a two-step process. Upon independently regulating the spin-coating speeds of each layer deposition, the optimal SD device shows a record power conversion efficiency (PCE) of 19.05% for binary single-junction OSCs, much higher than that of the corresponding blend casting (BC) device (18.14%). Impressively, this strategy presents excellent universality in boosting the photovoltaic performance of SD devices, exemplified by several nonfullerene acceptor systems. The mechanism studies reveal that the SD device with preferred vertical components distribution possesses high crystallinity, efficient exciton splitting, low energy loss, and balanced charge transport, resulting in all-around enhancement of photovoltaic performances. This work provides a valuable approach for high-efficiency OSCs, shedding light on understanding the relationship between photovoltaic performance and vertical component distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202204718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!