A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. | LitMetric

Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution.

Adv Mater

College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, China.

Published: August 2022

The variation of the vertical component distribution can significantly influence the photovoltaic performance of organic solar cells (OSCs), mainly due to its impact on exciton dissociation and charge-carrier transport and recombination. Herein, binary devices are fabricated via sequential deposition (SD) of D18 and L8-BO materials in a two-step process. Upon independently regulating the spin-coating speeds of each layer deposition, the optimal SD device shows a record power conversion efficiency (PCE) of 19.05% for binary single-junction OSCs, much higher than that of the corresponding blend casting (BC) device (18.14%). Impressively, this strategy presents excellent universality in boosting the photovoltaic performance of SD devices, exemplified by several nonfullerene acceptor systems. The mechanism studies reveal that the SD device with preferred vertical components distribution possesses high crystallinity, efficient exciton splitting, low energy loss, and balanced charge transport, resulting in all-around enhancement of photovoltaic performances. This work provides a valuable approach for high-efficiency OSCs, shedding light on understanding the relationship between photovoltaic performance and vertical component distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202204718DOI Listing

Publication Analysis

Top Keywords

vertical component
12
component distribution
12
photovoltaic performance
12
organic solar
8
solar cells
8
binary organic
4
cells breaking
4
breaking 19%
4
19% manipulating
4
vertical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!