Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been the choice of recent studies worldwide to control its pandemic. Given the similarity with the earlier SARS-CoV, it is possible to use the previously reported inhibitors to develop a new treatment for the current attack of SARS-CoV-2. This study used the formerly published SARS-CoV M small-molecule protease inhibitors to develop a pharmacophore model in order to design new ligands. Several strategies and scaffolds were evaluated giving rise to ten newly designed compounds. Molecular docking and dynamics simulations were performed on M enzyme in its active site to evaluate the newly designed ligands I-X. The results obtained from this work showed that compounds III-VI had a better molecular docking score than the co-crystallized ligand baicalein (3WL) giving -5.99, -5.94, -6.31, -6.56 and -5.74 kcal mol, respectively. Moreover, they could bind to the M binding site better than I, II and VII-X. The most promising chromen-2-one based compounds V-VI had sufficiently acceptable physicochemical and ADMET properties to be considered new leads for further investigations. This new understanding should help to improve predictions of the impact of new treatments on COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134034PMC
http://dx.doi.org/10.1039/d0ra10141aDOI Listing

Publication Analysis

Top Keywords

inhibitors develop
8
newly designed
8
molecular docking
8
ligand-based design
4
design molecular
4
molecular dynamics
4
dynamics admet
4
admet studies
4
studies suggested
4
suggested sars-cov-2
4

Similar Publications

IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes.

iScience

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France.

Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation).

View Article and Find Full Text PDF

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Unlabelled: Inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, often emerges during childhood and poses significant challenges due to its adverse effects on growth, development, and psychosocial well-being. Circular RNAs (circRNAs) have been implicated in the pathogenesis of diverse diseases. However, the specific biological role and mechanisms of circRNA OMA1 in children with IBD remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!