Understanding the chemico-physical properties of colloidal semiconductor nanocrystals (NCs) requires exploration of the dynamic processes occurring at the NC surfaces, in particular at the ligand-NC interface. Classical molecular dynamics (MD) simulations under realistic conditions are a powerful tool to acquire this knowledge because they have good accuracy and are computationally cheap, provided that a set of force-field (FF) parameters is available. In this work, we employed a stochastic algorithm, the adaptive rate Monte Carlo method, to optimize FF parameters of cesium lead halide perovskite (CsPbBr) NCs passivated with typical organic molecules used in the synthesis of these materials: oleates, phosphonates, sulfonates, and primary and quaternary ammonium ligands. The optimized FF parameters have been obtained against MD reference trajectories computed at the density functional theory level on small NC model systems. We validated our parameters through a comparison of a wide range of nonfitted properties to experimentally available values. With the exception of the NC-phosphonate case, the transferability of the FF model has been successfully tested on realistically sized systems (>5 nm) comprising thousands of passivating organic ligands and solvent molecules, just as those used in experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207923 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.2c00600 | DOI Listing |
J Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.
Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.
Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.
This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.
View Article and Find Full Text PDFMacromolecules
January 2025
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The environmental and economic challenges posed by the widespread use and disposal of plastics, particularly poly(ethylene terephthalate) (PET), require innovative solutions to mitigate their impact. Such mitigation begins with understanding physical properties of the polymer that could enable new recycling technologies. Although molecular simulations have provided valuable insights into PET interactions with various PET hydrolases, current nonpolarizable force fields neglect the electronic polarization effects inherent to PET interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!