Direct NP- A cost-effective extraction-free RT-qPCR based test for SARS-CoV-2.

Heliyon

Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.

Published: June 2022

Over 2.4 million daily total tests are currently being performed for SARS-CoV-2, in the United States. The most common SARS-CoV-2 tests require RNA extraction and purification. Extraction of RNA is a time-consuming and costly step that requires a constant supply of reagents and accessories. With the current testing demand, the supply chain remains the bottleneck for RNA extraction. Here, we report Direct NP- a cost-effective extraction-free RT-qPCR based dualplex test for SARS-CoV-2 from Nasopharyngeal (NP) swab specimens. Direct NP detects SARS-CoV-2 viral RNA from heat-denatured patient specimens using a dualplex RT-qPCR assay. Direct NP showed 92.5% positive percentage agreement (PPA) (95% Confidence Interval (CI) = 79.61%-98.43%) and 97% negative percent agreement (NPA) (95% CI = 89.11-100%) with the CDC assay. Direct NP reduces the cost per test to $2, making it suitable for broad-scale testing while lowering the cost burden on the healthcare system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212976PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e09735DOI Listing

Publication Analysis

Top Keywords

direct np-
8
np- cost-effective
8
cost-effective extraction-free
8
extraction-free rt-qpcr
8
rt-qpcr based
8
test sars-cov-2
8
rna extraction
8
assay direct
8
direct
5
sars-cov-2
5

Similar Publications

Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics.

Water Res

December 2024

Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:

Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.

View Article and Find Full Text PDF

Introduction And Importance: Insulinomas are rare pancreatic neuroendocrine neoplasms with an incidence of one to four cases per million annually and a 5 % to 10 % association with hereditary multiple endocrine neoplasia type-1. While most insulinomas are benign and well-encapsulated, approximately 6 % may have malignant potential. Intraoperative localization remains a vital component of treatment, often facilitated by modern imaging techniques like intraoperative ultrasound and fluorescence modalities.

View Article and Find Full Text PDF

The best layout design related to the sensor node distribution represents one among the major research questions in Wireless Sensor Networks (WSNs). It has a direct impact on WSNs' cost, detection capabilities, and monitoring quality. The optimization of several conflicting objectives, including as load balancing, coverage, cost, lifetime, connection, and energy consumption of sensor nodes, is necessary for layout optimization.

View Article and Find Full Text PDF

Background: In the context of global change, coral reefs and their associated biodiversity are under threat. Several conservation strategies using population genetics have been explored to protect them. However, some components of this ecosystem are understudied, such as hydrozoans, an important class of benthic organisms worldwide.

View Article and Find Full Text PDF

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!