Environmental stability remains a major challenge for the commercialisation of organic solar cells and degradation pathways remain poorly understood. Designing materials for improved device stability requires an understanding of the relationship between the properties of the donor or acceptor molecule and different degradation mechanisms. Here we study the correlations between various molecular parameters of the fullerene derivative bis-PCBM and the degradation rate of polymer:bis-PCBM organic solar cells, based on the same carbazole--benzothiadiazole polymer, in aerobic and anaerobic conditions. We compare eight high purity bis-PCBM isomers with different electronic, chemical and packing properties along with PCBM and the mixture of bis isomers. In the case of aerobic photodegradation, we find that device degradation rate is positively correlated to the LUMO energy of the bis-PCBM isomer and to the degree of crystallinity of the isomer, while the correlation of degradation with driving force for epoxide formation is unclear. These results support the idea that in these samples, aerobic photodegradation proceeds superoxide formation by the photogenerated polaron on the fullerene, followed by further chemical reaction. In the absence of air, photodegradation rate is correlated with molecular structure, supporting the mechanism of microstructural degradation fullerene dimerization. The approach and findings presented here show how control of specific molecular parameters through chemical design can serve as a strategy to enhance stability of organic solar cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134990PMC
http://dx.doi.org/10.1039/d1tc05768eDOI Listing

Publication Analysis

Top Keywords

organic solar
16
solar cells
16
degradation mechanisms
8
cells based
8
molecular parameters
8
degradation rate
8
aerobic photodegradation
8
degradation
7
relationship molecular
4
molecular properties
4

Similar Publications

Organic solar cells (OSCs) have recently achieved efficiencies of >20% in single-junction unit cells owing to rapid advancements in materials and device technologies. Large-area OSCs face several challenges that adversely affect their efficiency compared to small unit cells. These challenges include increased resistance loads derived from their larger dimensions, as well as limitations related to morphology, miscibility, and crystallinity.

View Article and Find Full Text PDF

MXenes, a rapidly emerging class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention for their outstanding properties, including high electrical conductivity, tunable work function, and solution processability. These characteristics have made MXenes highly versatile and widely adopted in the next generation of optoelectronic devices, such as perovskite and organic solar cells. However, their integration into silicon-based optoelectronic devices remains relatively underexplored, despite silicon's dominance in the semiconductor industry.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Nat Commun

January 2025

Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.

Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.

View Article and Find Full Text PDF

Solvent Engineering in Ligand Exchange of the Hole Transport Layer Enables High-Performance PbS Quantum Dot Solar Cells.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing 210023, China.

The performance of lead sulfide colloidal quantum dot (PbS-CQD) solar cells has long been hindered by interface defects in the transport layer. Traditionally, 1,2-ethanedithiol (EDT), used in solid-state ligand exchange, has been a common choice as the hole transport layer (HTL) in many PbS-CQD solar cells. However, the rapid reaction rate and chain length mismatch (shorter-chain EDT versus longer-chain oleic acid) during the ligand exchange process often introduce crack defects in the HTL film, resulting in an unexpected low performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!