Despite the yearly global impact of influenza B viruses (IBVs), limited host range has been a hurdle to developing a readily accessible small animal disease model for vaccine studies. Mouse-adapting IBV can produce highly pathogenic viruses through serial lung passaging in mice. Previous studies have highlighted amino acid changes throughout the viral genome correlating with increased pathogenicity, but no consensus mutations have been determined. We aimed to show that growth system can play a role in mouse-adapted IBV lethality. Two Yamagata-lineage IBVs were serially passaged 10 times in mouse lungs before expansion in embryonated eggs or Madin-Darby canine kidney cells (London line) for use in challenge studies. We observed that virus grown in embryonated eggs was significantly more lethal in mice than the same virus grown in cell culture. Ten additional serial lung passages of one strain again showed virus grown in eggs was more lethal than virus grown in cells. Additionally, no mutations in the surface glycoprotein amino acid sequences correlated to differences in lethality. Our results suggest growth system can influence lethality of mouse-adapted IBVs after serial lung passaging. Further research can highlight improved mechanisms for developing animal disease models for IBV vaccine research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229684 | PMC |
http://dx.doi.org/10.3390/v14061299 | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells.
View Article and Find Full Text PDFAnalyst
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
Antibiotic residue detection plays an important role in protecting human health, but real-time, rapid, and highly sensitive detection is still challenging. Herein, gold and silver nanoparticles (Au-Ag NPs) were grown on the surface of optical fibers and a 50 nm thick gold film was deposited on the sensor's surface to fabricate the Au-Ag@Au fiber SPR sensor. The sensitivity of the sensor reached 3512 nm per RIU in the refractive index range of 1.
View Article and Find Full Text PDFDiseases
January 2025
Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa.
Over the last two decades, the field of microRNA (miRNA) research has grown significantly. MiRNAs are a class of short, single-stranded, non-coding RNAs that regulate gene expression post-transcriptionally. Thereby, miRNAs regulate various essential biological processes including immunity.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
Background: Metformin, the frontline treatment for diabetes, has considerable potential as an immunomodulator; however, detailed bibliometric analyses on this subject are limited.
Methods: This study extracted 640 relevant articles from the Web of Science (WOS) Core Collection and conducted visual analyses using Microsoft Excel, VOSviewer, and CiteSpace.
Results: The findings showed that research on the immunomodulatory function of metformin has grown steadily since 2017, with China and the United States being the leading contributors.
Plant Dis
January 2025
Department of Plant Pathology, Foundation Plant Services, Davis, CA 95616, U.S.A.
Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!