In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the gene is expressed with immediate-early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene () for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229804PMC
http://dx.doi.org/10.3390/v14061289DOI Listing

Publication Analysis

Top Keywords

in-depth temporal
4
temporal transcriptome
4
transcriptome profiling
4
profiling alphaherpesvirus
4
alphaherpesvirus nanopore
4
nanopore sequencing
4
sequencing work
4
work long-read
4
long-read sequencing
4
sequencing lrs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!