Assessing COVID-19 vaccine effectiveness against emerging SARS-CoV-2 variants is crucial for determining future vaccination strategies and other public health strategies. When clinical effectiveness data are unavailable, a common method of assessing vaccine performance is to utilize neutralization assays using post-vaccination sera. Neutralization studies are typically performed across a wide array of settings, populations and vaccination strategies, and using different methodologies. For any comparison and meta-analysis to be meaningful, the design and methodology of the studies used must at minimum address aspects that confer a certain degree of reliability and comparability. We identified and characterized three important categories in which studies differ (cohort details, assay details and data reporting details) and that can affect the overall reliability and/or usefulness of neutralization assay results. We define reliability as a measure of methodological accuracy, proper study setting concerning subjects, samples and viruses, and reporting quality. Each category comprises a set of several relevant key parameters. To each parameter, we assigned a possible impact (ranging from low to high) on overall study reliability depending on its potential to influence the results. We then developed a reliability assessment tool that assesses the aggregate reliability of a study across all parameters. The reliability assessment tool provides explicit selection criteria for inclusion of comparable studies in meta-analyses of neutralization activity of SARS-CoV-2 variants in post-vaccination sera and can also both guide the design of future neutralization studies and serve as a checklist for including important details on key parameters in publications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227377PMC
http://dx.doi.org/10.3390/vaccines10060850DOI Listing

Publication Analysis

Top Keywords

neutralization studies
12
post-vaccination sera
12
sars-cov-2 variants
8
vaccination strategies
8
key parameters
8
reliability assessment
8
assessment tool
8
reliability
7
neutralization
6
studies
6

Similar Publications

Domestic Dogs Exposed to Orthopoxvirus in Urban Areas of Brazil.

Viruses

January 2025

Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil.

Domestic animals can share viral pathogens with humans, acting mainly as a bridge host. The genus hosts important zoonotic species that have emerged in urban areas worldwide. Nevertheless, the role of companion animals, such as dogs and cats, in the circulation of orthopoxviruses in urban areas remains poorly understood.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.

View Article and Find Full Text PDF

Japanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!