This work aimed to assess the recalibration and accurate characterization of commonly used smart soil-moisture sensors using computational methods. The paper describes an ensemble learning algorithm that boosts the performance of potato root moisture estimation and increases the simple moisture sensors' performance. It was prepared using several month-long everyday actual outdoor data and validated on the separated part of that dataset. To obtain conclusive results, two different potato varieties were grown on 24 separate plots on two distinct soil profiles and, besides natural precipitation, several different watering strategies were applied, and the experiment was monitored during the whole season. The acquisitions on every plot were performed using simple moisture sensors and were supplemented with reference manual gravimetric measurements and meteorological data. Next, a group of machine learning algorithms was tested to extract the information from this measurements dataset. The study showed the possibility of decreasing the median moisture estimation error from 2.035% for the baseline model to 0.808%, which was achieved using the Extra Trees algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228865 | PMC |
http://dx.doi.org/10.3390/s22124591 | DOI Listing |
Background: The cotton jassid, Amrasca biguttula, a dangerous and polyphagous pest, has recently invaded the Middle East, Africa and South America, raising concerns about the future of cotton and other food crops including okra, eggplant and potato. However, its potential distribution remains largely unknown, posing a challenge in developing effective phytosanitary strategies. We used an ensemble model of six machine-learning algorithms including random forest, maxent, support vector machines, classification and regression tree, generalized linear model and boosted regression trees to forecast the potential distribution of A.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background: The accurate and prompt diagnosis of infections is essential for improving patient outcomes and preventing bacterial drug resistance. Host gene expression profiling as an approach to infection diagnosis holds great potential in assisting early and accurate diagnosis of infection.
Methods: To improve the precision of infection diagnosis, we developed InfectDiagno, a rank-based ensemble machine learning algorithm for infection diagnosis via host gene expression patterns.
RSC Adv
January 2025
Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making.
View Article and Find Full Text PDFFront Genet
January 2025
Department of Mechatronics Engineering, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India.
Background: Cancer rates are rising rapidly, causing global mortality. According to the World Health Organization (WHO), 9.9 million people died from cancer in 2020.
View Article and Find Full Text PDFSci Rep
January 2025
School of Nursing, Chengdu Medical College, Chengdu, China.
Elderly patients undergoing maintenance hemodialysis (MHD) face a heightened risk of cognitive frailty (CF), which significantly compromises quality of life. Early identification of at-risk individuals and timely intervention are essential. Nevertheless, current CF risk prediction models fall short in accuracy to adequately fulfill clinical requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!