Motion assistance exoskeletons are designed to support the joint movement of people who perform repetitive tasks that cause damage to their health. To guarantee motion accompaniment, the integration between sensors and actuators should ensure a near-zero delay between the signal acquisition and the actuator response. This study presents the integration of a platform based on Imocap-GIS inertial sensors, with a motion assistance exoskeleton that generates joint movement by means of Maxon motors and Harmonic drive reducers, where a near zero-lag is required for the gait accompaniment to be correct. The Imocap-GIS sensors acquire positional data from the user's lower limbs and send the information through the UDP protocol to the CompactRio system, which constitutes a high-performance controller. These data are processed by the card and subsequently a control signal is sent to the motors that move the exoskeleton joints. Simulations of the proposed controller performance were conducted. The experimental results show that the motion accompaniment exhibits a delay of between 20 and 30 ms, and consequently, it may be stated that the integration between the exoskeleton and the sensors achieves a high efficiency. In this work, the integration between inertial sensors and an exoskeleton prototype has been proposed, where it is evident that the integration met the initial objective. In addition, the integration between the exoskeleton and IMOCAP is among the highest efficiency ranges of similar systems that are currently being developed, and the response lag that was obtained could be improved by means of the incorporation of complementary systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229016 | PMC |
http://dx.doi.org/10.3390/s22124559 | DOI Listing |
Alzheimers Dement
December 2024
School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology, Gwangju 61005, Gwangju, Korea, Republic of (South).
Background: Early-stage dementia, Mild Cognitive Impairment (MCI), is challenging to diagnose since it is a transient condition distinct from complete cognitive collapse. Recent clinical research studies have identified that balance impairments can be a significant indicator for predicting dementia in older adults. Accordingly, we aimed to identify key balance biomarkers using wearable inertial sensors for early detection of dementia/MCI.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Background: SuperAgers-individuals age 80+ with episodic memory performance at least as good as those 20-30 years younger-provide a unique perspective on cognitive resilience and resistance in aging. The SuperAging Research Initiative (SRI), spearheaded by The University of Chicago and involving multiple academic partners, investigates factors underpinning robust cognitive aging. One key SRI project, leverages a fully remote data collection paradigm to: 1) discern activity patterns that characterize SuperAgers and 2) explore the 'complexity hypothesis in aging'-whether dynamic physiological responsiveness is a hallmark of exceptional cognitive aging.
View Article and Find Full Text PDFBackground: Mild traumatic brain injury (mTBI) increases dementia risk. Delays in diagnosis are common due to insensitive tools, prolonging symptoms and time to treatment. Dual-task gait and functional mobility deficits are present post-mTBI and in people living with dementia (PWD); however, it is unclear whether dual-tasking can be used as a tool to differentiate between groups.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: Sleep apnea and insomnia are risk factors for dementia. Slower gait and increased gait variability are also associated with increased risk of MCI, linked to cognitive decline. Wearable digital sensors can serve as vital tools for measuring sleep and motor function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Augusta University, Augusta, GA, USA.
Background: Exercise may improve dual-tasking and mobility impairments among people living with dementia (PWD), but more evidence is needed. The purpose of this pilot randomized controlled trial (RCT) was to determine the effect of six months of exercise on single- and dual-task mobility compared to usual care alone in PWD.
Method: This assessor-blinded RCT (1:1) included n = 21 PWD in the usual care and n = 21 PWD in the exercise group at two residential care facilities (Age = 82 years, 35% female, Montreal Cognitive Assessment (MoCA) = 10.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!