A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interference-Aware Two-Level Differentiated Transmission for Improving Downlink Spatial Reuse in Dense WLANs. | LitMetric

Interference-Aware Two-Level Differentiated Transmission for Improving Downlink Spatial Reuse in Dense WLANs.

Sensors (Basel)

Department of Information and Communication Engineering, Dongguk University, Seoul 04620, Korea.

Published: June 2022

In this study, we address the problem of downlink throughput degradation in dense wireless local area networks (WLANs) based on the IEEE 802.11ax standard. We demonstrate that this problem essentially results from the asymmetric characteristic of carrier sense multiple access between downlink and uplink transmissions in infrastructure WLANs, and it is exacerbated by a dynamic sensitivity control algorithm that aims to improve spatial reuse (SR) in IEEE 802.11ax. To solve this problem, we propose the mechanism consisting of the (DCA) and (SPC) schemes. The proposed mechanism introduces a new measure called a spatial reusability indicator, which roughly estimates the signal-to-interference ratio from the received signal strength of beacon frames. Based on this measure, stations (STAs) are classified into the following two categories: (SR-STAs) and (NSR-STAs). Because SR-STAs are more robust to interference than NSR-STAs, the DCA scheme prioritizes transmissions to SR-STAs over those to NSR-STAs by using differentiated carrier sensing thresholds. Moreover, the SPC scheme selectively increases the transmission power to NSR-STAs to compensate for transmission failure due to interference. By combining the SPC and DCA schemes, the proposed mechanism effectively differentiates the downlink transmissions to SR-STAs and NSR-STAs in terms of channel access and transmission power, and it can boost the possibility of successful SR. The proposed mechanism can be easily implemented in IEEE 802.11ax without any complex calculation or significant signaling overhead. Moreover, we provide a practical guideline to determine appropriate parameter values for use in the proposed mechanism. The extensive simulation results obtained in this study confirm that the proposed mechanism increases the downlink throughput by more than several times without decreasing the overall throughput, compared to the existing mechanisms, and it maintains fairness between SR-STAs and NSR-STAs in terms of the ratio of successful transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231171PMC
http://dx.doi.org/10.3390/s22124429DOI Listing

Publication Analysis

Top Keywords

proposed mechanism
20
sr-stas nsr-stas
16
ieee 80211ax
12
spatial reuse
8
downlink throughput
8
schemes proposed
8
transmissions sr-stas
8
transmission power
8
nsr-stas terms
8
mechanism
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!