The effects of zinc oxide nanoparticles (ZnONPs) on the properties of rice starch−gelatin (RS−G) films were investigated. ZnONPs were synthesized by a green method utilizing Asiatic pennywort (Centella asiatica L.) extract. The ZnONPs were rod-shaped, with sizes ranging from 100−300 nm. An increase in the concentration of ZnONPs significantly (p < 0.05) increased the thickness (0.050−0.070 mm), tensile strength (3.49−4.63 MPa), water vapor permeability (5.52−7.45 × 10−11 g m/m2 s Pa), and thermal stability of the RS−G−ZnONPs nanocomposite films. On the other hand, elongation at break (92.20−37.68%) and film solubility (67.84−30.36%) were significantly lower (p < 0.05) than that of the control RS−G film (0% ZnONPs). Moreover, the addition of ZnONPs strongly affected the film appearance, color, transmission, and transparency. The ZnONPs had a profound effect on the UV-light barrier improvement of the RS−G film. The crystalline structure of the ZnONPs was observed in the fabricated nanocomposite films using X-ray diffraction analysis. Furthermore, the RS−G−ZnONPs nanocomposite films exhibited strong antimicrobial activity against all tested bacterial strains (Staphylococcus aureus TISTR 746, Bacillus cereus TISTR 687, Escherichia coli TISTR 527, Salmonella Typhimurium TISTR 1470) and antifungal activity toward Aspergillus niger. According to these findings, RS−G−ZnONPs nanocomposite film possesses a potential application as an active packaging: antimicrobial or UV protective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229570PMC
http://dx.doi.org/10.3390/polym14122505DOI Listing

Publication Analysis

Top Keywords

rs−g−znonps nanocomposite
12
nanocomposite films
12
uv-light barrier
8
thermal stability
8
tensile strength
8
properties rice
8
zinc oxide
8
oxide nanoparticles
8
znonps
8
rs−g film
8

Similar Publications

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

Enhanced room temperature ammonia gas sensing based on a multichannel PSS-functionalized graphene/PANI network.

Analyst

January 2025

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.

Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.

View Article and Find Full Text PDF

The sonochemical synthesis of a chitosan-ZnO/FeO nanocomposite yielded a highly porous structure and large surface area for enhancing the photocatalytic degradation of cationic (rhodamine B, RhB) and anionic (methyl orange, MO) dyes in aqueous solution. Chitosan-ZnO/FeO demonstrated a significant enhancement in photodegradation efficiency 99.49% for MO ( = 5.

View Article and Find Full Text PDF

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

Biophys Rev

December 2024

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!