Moving toward a more sustainable production model based on a circular economy, biopolymers are considered as one of the most promising alternatives to reduce the dependence on oil-based plastics. Polyhydroxybutyrate-co-valerate (PHBV), a bacterial biopolyester from the polyhydroxialkanoates (PHAs) family, seems to be an attractive candidate to replace commodities in many applications such as rigid packaging, among others, due to its excellent overall physicochemical and mechanical properties. However, it presents a relatively poor thermal stability, low toughness and ductility, thus limiting its applicability with respect to other polymers such as polypropylene (PP). To improve the performance of PHBV, reactive blending with an elastomer seems to be a proper cost-effective strategy that would lead to increased ductility and toughness by rubber toughening mechanisms. Hence, the objective of this work was the development and characterization of toughness-improved blends of PHBV with thermoplastic polyurethane (TPU) using hexamethylene diisocyanate (HMDI) as a reactive extrusion agent. To better understand the role of the elastomer and the compatibilizer, the morphological, rheological, thermal, and mechanical behavior of the blends were investigated. To explore the in-service performance of the blends, mechanical and long-term creep characterization were conducted at three different temperatures (-20, 23, 50 °C). Furthermore, the biodegradability in composting conditions has also been tested. The results showed that HMDI proved its efficiency as a compatibilizer in this system, reducing the average particle size of the TPU disperse phase and enhancing the adhesion between the PHBV matrix and TPU elastomer. Although the sole incorporation of the TPU leads to slight improvements in toughness, the compatibilizer plays a key role in improving the overall performance of the blends, leading to a clear improvement in toughness and long-term behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231000 | PMC |
http://dx.doi.org/10.3390/polym14122337 | DOI Listing |
Cancer Cell
January 2025
Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
Disseminated cancer cells in the peritoneal fluid often colonize omental fat-associated lymphoid clusters but the mechanisms are unclear. Here, we identify that innate-like B cells accumulate in the omentum of mice and women with early-stage ovarian cancer concomitantly with the extrusion of chromatin fibers by neutrophils called neutrophil extracellular traps (NETs). Studies using genetically modified NET-deficient mice, pharmacologic inhibition of NETs, and adoptive B cell transfer show that NETs induce expression of the chemoattractant CXCL13 in the pre-metastatic omentum, stimulating recruitment of peritoneal innate-like B cells that in turn promote expansion of regulatory T cells and omental metastasis through producing interleukin (IL)-10.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.
View Article and Find Full Text PDFACS Omega
December 2024
Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada.
Recently, there has been immense interest in using biodegradable polymers to replace petro-derived polymers. Poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV), which is gaining popularity due to its biodegradability, is used in developing blends and composites for a variety of applications. To enhance the miscibility between different components of a material with PHBV, functionalization of the PHBV chain can be done.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Av. de las Américas y Josefa Ortiz S/N, 80010 Culiacán, Sinaloa, México. Electronic address:
Starch has multiple uses in the food industry as a stabilizer, adhesive, gelling agent, thickener, and water retention agent. Nonetheless, native starch presents limitations that restrict its applications. Thus, starch can be chemically modified by reactive extrusion (REX) to overcome these disadvantages.
View Article and Find Full Text PDFTheriogenology
March 2025
Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China.
Accumulation of ketone bodies in the blood or tissues can trigger ketosis, exerting detrimental effects on bovine oocytes maturation. Exposure to its primary component, β-hydroxybutyric acid (βHB), disrupts mitochondrial function, culminating in the excessive buildup of reactive oxygen species (ROS) and subsequent initiation of apoptosis in oocytes. These ultimately result in poor oocyte quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!