A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Implant Surfaces Containing Bioglasses and Ciprofloxacin as Platforms for Bone Repair and Improved Resistance to Microbial Colonization. | LitMetric

Coatings are an attractive and challenging selection for improving the bioperformance of metallic devices. Composite materials based on bioglass/antibiotic/polymer are herein proposed as multifunctional thin films for hard tissue implants. We deposited a thin layer of the polymeric material by matrix-assisted pulsed laser evaporation-MAPLE onto Ti substrates. A second layer consisting of bioglass + antibiotic was applied by MAPLE onto the initial thin film. The antimicrobial activity of MAPLE-deposited thin films was evaluated on , , , and standard strains. The biocompatibility of obtained thin films was assessed on mouse osteoblast-like cells. The results of our study revealed that the laser-deposited coatings are biocompatible and resistant to microbial colonization and biofilm formation. Accordingly, they can be considered viable candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227520PMC
http://dx.doi.org/10.3390/pharmaceutics14061175DOI Listing

Publication Analysis

Top Keywords

thin films
12
microbial colonization
8
thin
5
implant surfaces
4
surfaces bioglasses
4
bioglasses ciprofloxacin
4
ciprofloxacin platforms
4
platforms bone
4
bone repair
4
repair improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!