The development of an efficient and convenient material to improve skin tissue regeneration is a major challenge in healthcare. Inspired by the theory of moist wound healing, portable chitooligosaccharide (COS)/sodium alginate (SA) dual-net gel films containing multiple metal ions were prepared by a casting and in-situ spray method, which can be used to significantly promote wound healing without the use of therapeutic drugs. A variety of divalent cations was introduced in this experiment to improve the advantages of each metal ion by forming metal ion chelates with COS. Moreover, the physicochemical properties and antioxidant properties of nIon-COS/SA gel films were systematically characterized and evaluated by in vitro experiments. The gel films showed good antibacterial activity against Gram-negative and Gram-positive bacteria. In addition, the gel films showed good cytocompatibility in cellular experiments, and the gel films with Zn and Sr addition significantly accelerated wound healing in whole skin defect model experiments. Therefore, this nIon-COS/SA gel film is an ideal candidate material for wound dressing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227937PMC
http://dx.doi.org/10.3390/ph15060750DOI Listing

Publication Analysis

Top Keywords

gel films
24
wound healing
16
metal ion
8
nion-cos/sa gel
8
experiments gel
8
films good
8
films
6
gel
6
wound
5
multifunctional gel
4

Similar Publications

In this study, we investigated the efficiency of a bentonite/iron-coated sand (B/ICS) stabilizer in reducing the mobility and accumulation of heavy metals (Pb, Cd, Zn, and As) in contaminated sediments. Bentonite is effective in the adsorption of heavy metals, while ICS is effective in the adsorption of As. When combined, the stabilizer can be applied to mixed-contaminated sediments containing both heavy metals and As.

View Article and Find Full Text PDF

Optical Properties of Thick TiO-P25 Films.

Nanomaterials (Basel)

January 2025

Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy.

In this study, TiO-P25 films on FTO substrates were synthesized using the sol-gel process and studied using Variable Angle Spectroscopy Ellipsometry (VASE) to determine their optical constants and thickness. The measurements were carried out at room temperature in the wavelength range of (300-900) nm at incident angles varying from 55° to 70°. The resulting thicknesses were found to be around 1000 nm.

View Article and Find Full Text PDF

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

In this paper, Gd-doped ZrO gate dielectric films and metal-oxide-semiconductor (MOS) capacitors structured as Al/ZrGdO /Si were prepared using an ultraviolet ozone (UVO)-assisted sol-gel method. The effects of heat treatment temperature on the microstructure, chemical bonding state, optical properties, surface morphology and electrical characteristics of the ZrGdO composite films and MOS capacitors were systematically investigated. The crystalline phase of the ZrGdO films appeared only at 600 °C, indicating that Gd doping effectively inhibits the crystallization of ZrO films.

View Article and Find Full Text PDF

A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!